Free cookie consent management tool by TermsFeed Policy Generator

source: branches/PersistentDataStructures/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFifteen.cs

Last change on this file was 14305, checked in by gkronber, 8 years ago

#2371: merged r14228, r14229 from trunk to stable

File size: 3.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Random;
27
28namespace HeuristicLab.Problems.Instances.DataAnalysis {
29  public class KeijzerFunctionFifteen : ArtificialRegressionDataDescriptor {
30
31    public override string Name { get { return "Keijzer 15 f(x, y) = x³ / 5 + y³ / 2 - y - x"; } }
32    public override string Description {
33      get {
34        return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
35        + "Authors: Maarten Keijzer" + Environment.NewLine
36        + "Function: f(x, y) = x³ / 5 + y³ / 2 - y - x" + Environment.NewLine
37        + "range(train): 20 Training cases x,y = rnd(-3, 3)" + Environment.NewLine
38        + "range(test): x,y = [-3:0.01:3]" + Environment.NewLine
39        + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
40      }
41    }
42    protected override string TargetVariable { get { return "F"; } }
43    protected override string[] VariableNames { get { return new string[] { "X", "Y", "F" }; } }
44    protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return 20; } }
47    protected override int TestPartitionStart { get { return 20; } }
48    protected override int TestPartitionEnd { get { return 20 + (601 * 601); } }
49    public int Seed { get; private set; }
50
51    public KeijzerFunctionFifteen() : this((int)System.DateTime.Now.Ticks) {
52    }
53    public KeijzerFunctionFifteen(int seed) : base() {
54      Seed = seed;
55    }
56    protected override List<List<double>> GenerateValues() {
57      List<List<double>> data = new List<List<double>>();
58      List<double> oneVariableTestData = SequenceGenerator.GenerateSteps(-3, 3, 0.01m).Select(v => (double)v).ToList();
59      List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
60
61      var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList();
62      var rand = new MersenneTwister((uint)Seed);
63
64      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
65        data.Add(ValueGenerator.GenerateUniformDistributedValues(rand.Next(), 20, -3, 3).ToList());
66        data[i].AddRange(combinations[i]);
67      }
68
69      double x, y;
70      List<double> results = new List<double>();
71      for (int i = 0; i < data[0].Count; i++) {
72        x = data[0][i];
73        y = data[1][i];
74        results.Add(x * x * x / 5.0 + y * y * y / 2.0 - y - x);
75      }
76      data.Add(results);
77
78      return data;
79    }
80  }
81}
Note: See TracBrowser for help on using the repository browser.