1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 |
|
---|
24 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
25 | /// <summary>
|
---|
26 | /// Evaluates FunctionTrees recursively by interpretation of the function symbols in each node with HL2 semantics.
|
---|
27 | /// Not thread-safe!
|
---|
28 | /// </summary>
|
---|
29 | public class HL2TreeEvaluator : TreeEvaluatorBase {
|
---|
30 | public HL2TreeEvaluator() : base() { } // for persistence
|
---|
31 | public HL2TreeEvaluator(double minValue, double maxValue) : base(minValue, maxValue) { }
|
---|
32 |
|
---|
33 | protected override double EvaluateBakedCode() {
|
---|
34 | Instr currInstr = codeArr[PC++];
|
---|
35 | switch (currInstr.symbol) {
|
---|
36 | case EvaluatorSymbolTable.VARIABLE: {
|
---|
37 | int row = sampleIndex + currInstr.i_arg1;
|
---|
38 | if (row < 0 || row >= dataset.Rows) return double.NaN;
|
---|
39 | else return currInstr.d_arg0 * dataset.GetValue(row, currInstr.i_arg0);
|
---|
40 | }
|
---|
41 | case EvaluatorSymbolTable.CONSTANT: {
|
---|
42 | return currInstr.d_arg0;
|
---|
43 | }
|
---|
44 | case EvaluatorSymbolTable.DIFFERENTIAL: {
|
---|
45 | int row = sampleIndex + currInstr.i_arg1;
|
---|
46 | if (row < 1 || row >= dataset.Rows) return double.NaN;
|
---|
47 | else {
|
---|
48 | double prevValue = dataset.GetValue(row - 1, currInstr.i_arg0);
|
---|
49 | return currInstr.d_arg0 * (dataset.GetValue(row, currInstr.i_arg0) - prevValue);
|
---|
50 | }
|
---|
51 | }
|
---|
52 | case EvaluatorSymbolTable.MULTIPLICATION: {
|
---|
53 | double result = EvaluateBakedCode();
|
---|
54 | for (int i = 1; i < currInstr.arity; i++) {
|
---|
55 | result *= EvaluateBakedCode();
|
---|
56 | }
|
---|
57 | return result;
|
---|
58 | }
|
---|
59 | case EvaluatorSymbolTable.ADDITION: {
|
---|
60 | double sum = EvaluateBakedCode();
|
---|
61 | for (int i = 1; i < currInstr.arity; i++) {
|
---|
62 | sum += EvaluateBakedCode();
|
---|
63 | }
|
---|
64 | return sum;
|
---|
65 | }
|
---|
66 | case EvaluatorSymbolTable.SUBTRACTION: {
|
---|
67 | return EvaluateBakedCode() - EvaluateBakedCode();
|
---|
68 | }
|
---|
69 | case EvaluatorSymbolTable.DIVISION: {
|
---|
70 | double arg0 = EvaluateBakedCode();
|
---|
71 | double arg1 = EvaluateBakedCode();
|
---|
72 | if (double.IsNaN(arg0) || double.IsNaN(arg1)) return double.NaN;
|
---|
73 | if (Math.Abs(arg1) < (10e-20)) return 0.0; else return (arg0 / arg1);
|
---|
74 | }
|
---|
75 | case EvaluatorSymbolTable.COSINUS: {
|
---|
76 | return Math.Cos(EvaluateBakedCode());
|
---|
77 | }
|
---|
78 | case EvaluatorSymbolTable.SINUS: {
|
---|
79 | return Math.Sin(EvaluateBakedCode());
|
---|
80 | }
|
---|
81 | case EvaluatorSymbolTable.EXP: {
|
---|
82 | return Math.Exp(EvaluateBakedCode());
|
---|
83 | }
|
---|
84 | case EvaluatorSymbolTable.LOG: {
|
---|
85 | return Math.Log(EvaluateBakedCode());
|
---|
86 | }
|
---|
87 | case EvaluatorSymbolTable.POWER: {
|
---|
88 | double x = EvaluateBakedCode();
|
---|
89 | double p = EvaluateBakedCode();
|
---|
90 | return Math.Pow(x, p);
|
---|
91 | }
|
---|
92 | case EvaluatorSymbolTable.SIGNUM: {
|
---|
93 | double value = EvaluateBakedCode();
|
---|
94 | if (double.IsNaN(value)) return double.NaN;
|
---|
95 | if (value < 0.0) return -1.0;
|
---|
96 | if (value > 0.0) return 1.0;
|
---|
97 | return 0.0;
|
---|
98 | }
|
---|
99 | case EvaluatorSymbolTable.SQRT: {
|
---|
100 | return Math.Sqrt(EvaluateBakedCode());
|
---|
101 | }
|
---|
102 | case EvaluatorSymbolTable.TANGENS: {
|
---|
103 | return Math.Tan(EvaluateBakedCode());
|
---|
104 | }
|
---|
105 | case EvaluatorSymbolTable.AND: { // only defined for inputs 1 and 0
|
---|
106 | double result = EvaluateBakedCode();
|
---|
107 | bool hasNaNBranch = false;
|
---|
108 | for (int i = 1; i < currInstr.arity; i++) {
|
---|
109 | if (result < 0.5 || double.IsNaN(result)) hasNaNBranch |= double.IsNaN(EvaluateBakedCode());
|
---|
110 | else {
|
---|
111 | result = EvaluateBakedCode();
|
---|
112 | }
|
---|
113 | }
|
---|
114 | if (hasNaNBranch || double.IsNaN(result)) return double.NaN;
|
---|
115 | if (result < 0.5) return 0.0;
|
---|
116 | return 1.0;
|
---|
117 | }
|
---|
118 | case EvaluatorSymbolTable.EQU: {
|
---|
119 | double x = EvaluateBakedCode();
|
---|
120 | double y = EvaluateBakedCode();
|
---|
121 | if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
|
---|
122 | // direct comparison of double values is most likely incorrect but
|
---|
123 | // that's the way how it is implemented in the standard HL2 function library
|
---|
124 | if (x == y) return 1.0; else return 0.0;
|
---|
125 | }
|
---|
126 | case EvaluatorSymbolTable.GT: {
|
---|
127 | double x = EvaluateBakedCode();
|
---|
128 | double y = EvaluateBakedCode();
|
---|
129 | if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
|
---|
130 | if (x > y) return 1.0;
|
---|
131 | return 0.0;
|
---|
132 | }
|
---|
133 | case EvaluatorSymbolTable.IFTE: { // only defined for condition 0 or 1
|
---|
134 | double condition = EvaluateBakedCode();
|
---|
135 | double result;
|
---|
136 | bool hasNaNBranch = false;
|
---|
137 | if (double.IsNaN(condition)) return double.NaN;
|
---|
138 | if (condition > 0.5) {
|
---|
139 | result = EvaluateBakedCode(); hasNaNBranch = double.IsNaN(EvaluateBakedCode());
|
---|
140 | } else {
|
---|
141 | hasNaNBranch = double.IsNaN(EvaluateBakedCode()); result = EvaluateBakedCode();
|
---|
142 | }
|
---|
143 | if (hasNaNBranch) return double.NaN;
|
---|
144 | return result;
|
---|
145 | }
|
---|
146 | case EvaluatorSymbolTable.LT: {
|
---|
147 | double x = EvaluateBakedCode();
|
---|
148 | double y = EvaluateBakedCode();
|
---|
149 | if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
|
---|
150 | if (x < y) return 1.0;
|
---|
151 | return 0.0;
|
---|
152 | }
|
---|
153 | case EvaluatorSymbolTable.NOT: { // only defined for inputs 0 or 1
|
---|
154 | double result = EvaluateBakedCode();
|
---|
155 | if (double.IsNaN(result)) return double.NaN;
|
---|
156 | if (result < 0.5) return 1.0;
|
---|
157 | return 0.0;
|
---|
158 | }
|
---|
159 | case EvaluatorSymbolTable.OR: { // only defined for inputs 0 or 1
|
---|
160 | double result = EvaluateBakedCode();
|
---|
161 | bool hasNaNBranch = false;
|
---|
162 | for (int i = 1; i < currInstr.arity; i++) {
|
---|
163 | if (double.IsNaN(result) || result > 0.5) hasNaNBranch |= double.IsNaN(EvaluateBakedCode());
|
---|
164 | else
|
---|
165 | result = EvaluateBakedCode();
|
---|
166 | }
|
---|
167 | if (hasNaNBranch || double.IsNaN(result)) return double.NaN;
|
---|
168 | if (result > 0.5) return 1.0;
|
---|
169 | return 0.0;
|
---|
170 | }
|
---|
171 | default: {
|
---|
172 | throw new NotImplementedException();
|
---|
173 | }
|
---|
174 | }
|
---|
175 | }
|
---|
176 | }
|
---|
177 | }
|
---|