Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Persistence Test/HeuristicLab.GP.StructureIdentification.Classification/3.3/ClassificationMeanSquaredErrorEvaluator.cs @ 4501

Last change on this file since 4501 was 2328, checked in by gkronber, 15 years ago

this is the remaining part of changeset r2327.
Applied changes in modeling plugins that are necessary for the new model analyzer (#722)

  • predictor has properties for the lower and upper limit of the predicted value
  • added views for predictors that show the limits (also added a new view for GeneticProgrammingModel that shows the size and height of the model)
  • Reintroduced TreeEvaluatorInjectors that read a PunishmentFactor and calculate the lower and upper limits for estimated values (limits are set in the tree evaluators)
  • Added operators to create Predictors. Changed modeling algorithms to use the predictors for the calculation of final model qualities and variable impacts (to be compatible with the new model analyzer the predictors use a very large PunishmentFactor)
  • replaced all private implementations of double.IsAlmost and use HL.Commons instead (see #733 r2324)
  • Implemented operator SolutionExtractor and moved BestSolutionStorer from HL.Logging to HL.Modeling (fixes #734)
File size: 3.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.Common;
26
27namespace HeuristicLab.GP.StructureIdentification.Classification {
28  public class ClassificationMeanSquaredErrorEvaluator : GPClassificationEvaluatorBase {
29    private const double EPSILON = 1.0E-7;
30    public override string Description {
31      get {
32        return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates the mean-squared-error
33for the estimated values vs. the real values of 'TargetVariable'.";
34      }
35    }
36
37    public ClassificationMeanSquaredErrorEvaluator()
38      : base() {
39      AddVariableInfo(new VariableInfo("MSE", "The mean squared error of the model", typeof(DoubleData), VariableKind.New));
40    }
41
42    public override void Evaluate(IScope scope, ITreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {
43      double errorsSquaredSum = 0;
44      for (int sample = start; sample < end; sample++) {
45        double estimated = evaluator.Evaluate(sample);
46        double original = dataset.GetValue(sample, targetVariable);
47        if (!double.IsNaN(original) && !double.IsInfinity(original)) {
48          double error = estimated - original;
49          // between classes use squared error
50          // on the lower end and upper end only add linear error if the absolute error is larger than 1
51          // the error>1.0 constraint is needed for balance because in the interval ]-1, 1[ the squared error is smaller than the absolute error
52          if ((original.IsAlmost(classes[0]) && error < -1.0) ||
53            (original.IsAlmost(classes[classes.Length - 1]) && error > 1.0)) {
54            errorsSquaredSum += Math.Abs(error); // only add linear error below the smallest class or above the largest class
55          } else {
56            errorsSquaredSum += error * error;
57          }
58        }
59      }
60
61      errorsSquaredSum /= (end - start);
62      if (double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
63        errorsSquaredSum = double.MaxValue;
64      }
65
66      DoubleData mse = GetVariableValue<DoubleData>("MSE", scope, false, false);
67      if (mse == null) {
68        mse = new DoubleData();
69        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MSE"), mse));
70      }
71
72      mse.Data = errorsSquaredSum;
73    }
74  }
75}
Note: See TracBrowser for help on using the repository browser.