Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Parameter-less Population Pyramid/HeuristicLab.Algorithms.ParameterlessPopulationPyramid/3.3/LinkageTree.cs @ 11668

Last change on this file since 11668 was 11667, checked in by bgoldman, 10 years ago

#2282 Major bug fixes, now gets answers close to correct.

File size: 9.6 KB
RevLine 
[11656]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
[11662]25using HeuristicLab.Common;
[11656]26using HeuristicLab.Core;
27
28namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
29  public static class ListExtensions {
30    public static IList<T> Swap<T>(this IList<T> list, int indexA, int indexB) {
31      T tmp = list[indexA];
32      list[indexA] = list[indexB];
33      list[indexB] = tmp;
34      return list;
35    }
36    public static IList<T> ShuffleInPlace<T>(this IList<T> list, IRandom random) {
[11666]37      return list.ShuffleInPlace(random, 0, list.Count - 1);
[11656]38    }
39    public static IList<T> ShuffleInPlace<T>(this IList<T> list, IRandom random, int maxIndex) {
40      return list.ShuffleInPlace(random, 0, maxIndex);
41    }
42    public static IList<T> ShuffleInPlace<T>(this IList<T> list, IRandom random, int minIndex, int maxIndex) {
[11666]43      for (int i = maxIndex; i > minIndex; i--) {
44        int swapIndex = random.Next(minIndex, i + 1);
[11656]45        list.Swap(i, swapIndex);
46      }
47      return list;
48    }
[11662]49
[11666]50    public static IEnumerable<T> ShuffleList<T>(this IList<T> source, IRandom random) {
[11662]51      for (int i = source.Count - 1; i > 0; i--) {
52        // Swap element "i" with a random earlier element (including itself)
53        int swapIndex = random.Next(i + 1);
[11667]54        source.Swap(i, swapIndex);
55        yield return source[i];
[11662]56      }
57      yield return source[0];
58    }
59
[11656]60  }
61  public class LinkageTree {
62
[11662]63    private readonly int[][][] occurances;
64    private readonly List<int>[] clusters;
[11663]65    private List<int> clusterOrdering;
[11662]66    private readonly int length;
[11663]67    private readonly IRandom rand;
68    private bool rebuildRequired = false;
[11656]69
[11663]70    public LinkageTree(int length, IRandom rand) {
[11662]71      this.length = length;
[11663]72      this.rand = rand;
[11662]73      occurances = new int[length][][];
[11656]74
[11663]75      // Create a lower triangular matrix without the diagonal
[11662]76      for (int i = 1; i < length; i++) {
[11656]77        occurances[i] = new int[i][];
78        for (int j = 0; j < i; j++) {
79          occurances[i][j] = new int[4];
80        }
81      }
[11662]82      clusters = new List<int>[2 * length - 1];
[11656]83      for (int i = 0; i < clusters.Length; i++) {
84        clusters[i] = new List<int>();
85      }
[11662]86      clusterOrdering = new List<int>();
[11656]87
88      // first "length" clusters just contain a single gene
[11662]89      for (int i = 0; i < length; i++) {
[11656]90        clusters[i].Add(i);
91      }
92    }
93
94    public void Add(bool[] solution) {
[11662]95      if (solution.Length != length) throw new ArgumentException("The individual has not the correct length.");
[11656]96      for (int i = 1; i < solution.Length; i++) {
97        for (int j = 0; j < i; j++) {
98          // Updates the entry of the 4 long array based on the two bits
99          var pattern = (Convert.ToInt32(solution[j]) << 1) + Convert.ToInt32(solution[i]);
100          occurances[i][j][pattern]++;
101        }
102      }
[11663]103      rebuildRequired = true;
[11656]104    }
105
106    // While "total" always has an integer value, it is a double to reduce
107    // how often type casts are needed to prevent integer divison
108    private static double NegativeEntropy(int[] counts, double total) {
109      double sum = 0;
110      foreach (var value in counts) {
[11662]111        if (value == 0) continue;
112        var p = value / total;
113        sum += (p * Math.Log(p));
[11656]114      }
115      return sum;
116    }
[11662]117
[11656]118    private double EntropyDistance(int i, int j) {
[11663]119      // This ensures you are using the lower triangular part of "occurances"
[11656]120      if (i < j) {
121        int temp = i;
122        i = j;
123        j = temp;
124      }
125      var entry = occurances[i][j];
126      int[] bits = new int[4];
127      // extracts the occurrences of the individual bits
128      bits[0] = entry[0] + entry[2];  // i zero
129      bits[1] = entry[1] + entry[3];  // i one
130      bits[2] = entry[0] + entry[1];  // j zero
131      bits[3] = entry[2] + entry[3];  // j one
132      double total = bits[0] + bits[1];
133      // entropy of the two bits on their own
134      double separate = NegativeEntropy(bits, total);
135      // entropy of the two bits as a single unit
136      double together = NegativeEntropy(entry, total);
137      // If together there is 0 entropy, the distance is zero
[11662]138      if (together.IsAlmost(0)) {
139        return 0.0;
[11656]140      }
[11662]141      return 2 - (separate / together);
[11656]142    }
143
[11663]144    private void Rebuild() {
[11656]145      // Keep track of which clusters have not been merged
[11662]146      var topLevel = Enumerable.Range(0, length).ToList();
147      bool[] useful = Enumerable.Repeat(true, clusters.Length).ToArray();
[11656]148
149      // Store the distances between all clusters
150      double[,] distances = new double[clusters.Length, clusters.Length];
[11662]151      for (int i = 1; i < length; i++) {
[11656]152        for (int j = 0; j < i; j++) {
153          distances[i, j] = EntropyDistance(clusters[i][0], clusters[j][0]);
154          // make it symmetric
155          distances[j, i] = distances[i, j];
156        }
157      }
158      // Each iteration we add some amount to the path, and remove the last
159      // two elements.  This keeps track of how much of usable is in the path.
160      int end_of_path = 0;
161
162      // build all clusters of size greater than 1
[11662]163      for (int index = length; index < clusters.Length; index++) {
[11656]164        // Shuffle everything not yet in the path
[11666]165        topLevel.ShuffleInPlace(rand, end_of_path, topLevel.Count-1);
[11656]166
167        // if nothing in the path, just add a random usable node
168        if (end_of_path == 0) {
169          end_of_path = 1;
170        }
171        while (end_of_path < topLevel.Count) {
172          // last node in the path
173          int final = topLevel[end_of_path - 1];
174
175          // best_index stores the location of the best thing in the top level
176          int best_index = end_of_path;
177          double min_dist = distances[final, topLevel[best_index]];
178          // check all options which might be closer to "final" than "topLevel[best_index]"
179          for (int option = end_of_path + 1; option < topLevel.Count; option++) {
180            if (distances[final, topLevel[option]] < min_dist) {
181              min_dist = distances[final, topLevel[option]];
182              best_index = option;
183            }
184          }
185          // If the current last two in the path are minimally distant
186          if (end_of_path > 1 && min_dist >= distances[final, topLevel[end_of_path - 2]]) {
187            break;
188          }
189
190          // move the best to the end of the path
191          topLevel.Swap(end_of_path, best_index);
192          end_of_path++;
193
194        }
195        // Last two elements in the path are the clusters to join
196        int first = topLevel[end_of_path - 2];
197        int second = topLevel[end_of_path - 1];
198
199        // Only keep a cluster if the distance between the joining clusters is > zero
[11662]200        bool keep = !distances[first, second].IsAlmost(0.0);
[11656]201        useful[first] = keep;
202        useful[second] = keep;
203
204        // create the new cluster
205        clusters[index] = clusters[first].Concat(clusters[second]).ToList();
206        // Calculate distances from all clusters to the newly created cluster
207        int i = 0;
208        int end = topLevel.Count - 1;
209        while (i <= end) {
210          int x = topLevel[i];
211          // Moves 'first' and 'second' to after "end" in topLevel
212          if (x == first || x == second) {
213            topLevel.Swap(i, end);
214            end--;
215            continue;
216          }
217          // Use the previous distances to calculate the joined distance
218          double first_distance = distances[first, x];
219          first_distance *= clusters[first].Count;
220          double second_distance = distances[second, x];
221          second_distance *= clusters[second].Count;
222          distances[x, index] = ((first_distance + second_distance)
223              / (clusters[first].Count + clusters[second].Count));
224          // make it symmetric
225          distances[index, x] = distances[x, index];
226          i++;
227        }
228
229        // Remove first and second from the path
230        end_of_path -= 2;
231        topLevel.RemoveAt(topLevel.Count - 1);
232        topLevel[topLevel.Count - 1] = index;
233      }
234      // Extract the useful clusters
[11662]235      clusterOrdering.Clear();
[11656]236      // Add all useful clusters. The last one is never useful.
237      for (int i = 0; i < useful.Length - 1; i++) {
[11662]238        if (useful[i]) clusterOrdering.Add(i);
[11656]239      }
[11663]240
241      // Shuffle before sort to ensure ties are broken randomly
[11662]242      clusterOrdering.ShuffleInPlace(rand);
[11663]243      clusterOrdering = clusterOrdering.OrderBy(i => clusters[i].Count).ToList();
[11656]244    }
245
[11663]246    public IEnumerable<List<int>> Clusters {
247      get {
248        // Just in time rebuilding
249        if (rebuildRequired) Rebuild();
250        foreach (var index in clusterOrdering) {
251          // Send out the clusters in the desired order
252          yield return clusters[index];
253        }
254      }
[11656]255    }
256  }
[11663]257}
Note: See TracBrowser for help on using the repository browser.