Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Parameter-less Population Pyramid/HeuristicLab.Algorithms.ParameterlessPopulationPyramid/3.3/LinkageTree.cs @ 11669

Last change on this file since 11669 was 11669, checked in by bgoldman, 10 years ago

#2282 Code cleanup, added Deceptive Step Trap problem.

File size: 8.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27
28namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
29 
30  public class LinkageTree {
31
32    private readonly int[][][] occurances;
33    private readonly List<int>[] clusters;
34    private List<int> clusterOrdering;
35    private readonly int length;
36    private readonly IRandom rand;
37    private bool rebuildRequired = false;
38
39    public LinkageTree(int length, IRandom rand) {
40      this.length = length;
41      this.rand = rand;
42      occurances = new int[length][][];
43
44      // Create a lower triangular matrix without the diagonal
45      for (int i = 1; i < length; i++) {
46        occurances[i] = new int[i][];
47        for (int j = 0; j < i; j++) {
48          occurances[i][j] = new int[4];
49        }
50      }
51      clusters = new List<int>[2 * length - 1];
52      for (int i = 0; i < clusters.Length; i++) {
53        clusters[i] = new List<int>();
54      }
55      clusterOrdering = new List<int>();
56
57      // first "length" clusters just contain a single gene
58      for (int i = 0; i < length; i++) {
59        clusters[i].Add(i);
60      }
61    }
62
63    public void Add(bool[] solution) {
64      if (solution.Length != length) throw new ArgumentException("The individual has not the correct length.");
65      for (int i = 1; i < solution.Length; i++) {
66        for (int j = 0; j < i; j++) {
67          // Updates the entry of the 4 long array based on the two bits
68          var pattern = (Convert.ToInt32(solution[j]) << 1) + Convert.ToInt32(solution[i]);
69          occurances[i][j][pattern]++;
70        }
71      }
72      rebuildRequired = true;
73    }
74
75    // While "total" always has an integer value, it is a double to reduce
76    // how often type casts are needed to prevent integer divison
77    private static double NegativeEntropy(int[] counts, double total) {
78      double sum = 0;
79      foreach (var value in counts) {
80        if (value == 0) continue;
81        var p = value / total;
82        sum += (p * Math.Log(p));
83      }
84      return sum;
85    }
86
87    private double EntropyDistance(int i, int j) {
88      // This ensures you are using the lower triangular part of "occurances"
89      if (i < j) {
90        int temp = i;
91        i = j;
92        j = temp;
93      }
94      var entry = occurances[i][j];
95      int[] bits = new int[4];
96      // extracts the occurrences of the individual bits
97      bits[0] = entry[0] + entry[2];  // i zero
98      bits[1] = entry[1] + entry[3];  // i one
99      bits[2] = entry[0] + entry[1];  // j zero
100      bits[3] = entry[2] + entry[3];  // j one
101      double total = bits[0] + bits[1];
102      // entropy of the two bits on their own
103      double separate = NegativeEntropy(bits, total);
104      // entropy of the two bits as a single unit
105      double together = NegativeEntropy(entry, total);
106      // If together there is 0 entropy, the distance is zero
107      if (together.IsAlmost(0)) {
108        return 0.0;
109      }
110      return 2 - (separate / together);
111    }
112
113    private void Rebuild() {
114      // Keep track of which clusters have not been merged
115      var topLevel = Enumerable.Range(0, length).ToList();
116      bool[] useful = Enumerable.Repeat(true, clusters.Length).ToArray();
117
118      // Store the distances between all clusters
119      double[,] distances = new double[clusters.Length, clusters.Length];
120      for (int i = 1; i < length; i++) {
121        for (int j = 0; j < i; j++) {
122          distances[i, j] = EntropyDistance(clusters[i][0], clusters[j][0]);
123          // make it symmetric
124          distances[j, i] = distances[i, j];
125        }
126      }
127      // Each iteration we add some amount to the path, and remove the last
128      // two elements.  This keeps track of how much of usable is in the path.
129      int end_of_path = 0;
130
131      // build all clusters of size greater than 1
132      for (int index = length; index < clusters.Length; index++) {
133        // Shuffle everything not yet in the path
134        topLevel.ShuffleInPlace(rand, end_of_path, topLevel.Count-1);
135
136        // if nothing in the path, just add a random usable node
137        if (end_of_path == 0) {
138          end_of_path = 1;
139        }
140        while (end_of_path < topLevel.Count) {
141          // last node in the path
142          int final = topLevel[end_of_path - 1];
143
144          // best_index stores the location of the best thing in the top level
145          int best_index = end_of_path;
146          double min_dist = distances[final, topLevel[best_index]];
147          // check all options which might be closer to "final" than "topLevel[best_index]"
148          for (int option = end_of_path + 1; option < topLevel.Count; option++) {
149            if (distances[final, topLevel[option]] < min_dist) {
150              min_dist = distances[final, topLevel[option]];
151              best_index = option;
152            }
153          }
154          // If the current last two in the path are minimally distant
155          if (end_of_path > 1 && min_dist >= distances[final, topLevel[end_of_path - 2]]) {
156            break;
157          }
158
159          // move the best to the end of the path
160          topLevel.Swap(end_of_path, best_index);
161          end_of_path++;
162
163        }
164        // Last two elements in the path are the clusters to join
165        int first = topLevel[end_of_path - 2];
166        int second = topLevel[end_of_path - 1];
167
168        // Only keep a cluster if the distance between the joining clusters is > zero
169        bool keep = !distances[first, second].IsAlmost(0.0);
170        useful[first] = keep;
171        useful[second] = keep;
172
173        // create the new cluster
174        clusters[index] = clusters[first].Concat(clusters[second]).ToList();
175        // Calculate distances from all clusters to the newly created cluster
176        int i = 0;
177        int end = topLevel.Count - 1;
178        while (i <= end) {
179          int x = topLevel[i];
180          // Moves 'first' and 'second' to after "end" in topLevel
181          if (x == first || x == second) {
182            topLevel.Swap(i, end);
183            end--;
184            continue;
185          }
186          // Use the previous distances to calculate the joined distance
187          double first_distance = distances[first, x];
188          first_distance *= clusters[first].Count;
189          double second_distance = distances[second, x];
190          second_distance *= clusters[second].Count;
191          distances[x, index] = ((first_distance + second_distance)
192              / (clusters[first].Count + clusters[second].Count));
193          // make it symmetric
194          distances[index, x] = distances[x, index];
195          i++;
196        }
197
198        // Remove first and second from the path
199        end_of_path -= 2;
200        topLevel.RemoveAt(topLevel.Count - 1);
201        topLevel[topLevel.Count - 1] = index;
202      }
203      // Extract the useful clusters
204      clusterOrdering.Clear();
205      // Add all useful clusters. The last one is never useful.
206      for (int i = 0; i < useful.Length - 1; i++) {
207        if (useful[i]) clusterOrdering.Add(i);
208      }
209
210      // Shuffle before sort to ensure ties are broken randomly
211      clusterOrdering.ShuffleInPlace(rand);
212      clusterOrdering = clusterOrdering.OrderBy(i => clusters[i].Count).ToList();
213    }
214
215    public IEnumerable<List<int>> Clusters {
216      get {
217        // Just in time rebuilding
218        if (rebuildRequired) Rebuild();
219        foreach (var index in clusterOrdering) {
220          // Send out the clusters in the desired order
221          yield return clusters[index];
222        }
223      }
224    }
225  }
226}
Note: See TracBrowser for help on using the repository browser.