Free cookie consent management tool by TermsFeed Policy Generator

source: branches/OaaS/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleRegression.cs @ 10785

Last change on this file since 10785 was 8139, checked in by mkommend, 13 years ago

#1722: Renamed indizes to indices in the whole trunk solution.

File size: 11.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Optimization;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
34using HeuristicLab.Parameters;
35
36namespace HeuristicLab.Algorithms.DataAnalysis {
37  /// <summary>
38  /// Neural network ensemble regression data analysis algorithm.
39  /// </summary>
40  [Item("Neural Network Ensemble Regression", "Neural network ensemble regression data analysis algorithm (wrapper for ALGLIB). Further documentation: http://www.alglib.net/dataanalysis/mlpensembles.php")]
41  [Creatable("Data Analysis")]
42  [StorableClass]
43  public sealed class NeuralNetworkEnsembleRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
44    private const string EnsembleSizeParameterName = "EnsembleSize";
45    private const string DecayParameterName = "Decay";
46    private const string HiddenLayersParameterName = "HiddenLayers";
47    private const string NodesInFirstHiddenLayerParameterName = "NodesInFirstHiddenLayer";
48    private const string NodesInSecondHiddenLayerParameterName = "NodesInSecondHiddenLayer";
49    private const string RestartsParameterName = "Restarts";
50    private const string NeuralNetworkEnsembleRegressionModelResultName = "Neural network ensemble regression solution";
51
52    #region parameter properties
53    public IFixedValueParameter<IntValue> EnsembleSizeParameter {
54      get { return (IFixedValueParameter<IntValue>)Parameters[EnsembleSizeParameterName]; }
55    }
56    public IFixedValueParameter<DoubleValue> DecayParameter {
57      get { return (IFixedValueParameter<DoubleValue>)Parameters[DecayParameterName]; }
58    }
59    public IConstrainedValueParameter<IntValue> HiddenLayersParameter {
60      get { return (IConstrainedValueParameter<IntValue>)Parameters[HiddenLayersParameterName]; }
61    }
62    public IFixedValueParameter<IntValue> NodesInFirstHiddenLayerParameter {
63      get { return (IFixedValueParameter<IntValue>)Parameters[NodesInFirstHiddenLayerParameterName]; }
64    }
65    public IFixedValueParameter<IntValue> NodesInSecondHiddenLayerParameter {
66      get { return (IFixedValueParameter<IntValue>)Parameters[NodesInSecondHiddenLayerParameterName]; }
67    }
68    public IFixedValueParameter<IntValue> RestartsParameter {
69      get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
70    }
71    #endregion
72
73    #region properties
74    public int EnsembleSize {
75      get { return EnsembleSizeParameter.Value.Value; }
76      set {
77        if (value < 1) throw new ArgumentException("The number of models in the ensemble must be positive and at least one.", "EnsembleSize");
78        EnsembleSizeParameter.Value.Value = value;
79      }
80    }
81    public double Decay {
82      get { return DecayParameter.Value.Value; }
83      set {
84        if (value < 0.001 || value > 100) throw new ArgumentException("The decay parameter should be set to a value between 0.001 and 100.", "Decay");
85        DecayParameter.Value.Value = value;
86      }
87    }
88    public int HiddenLayers {
89      get { return HiddenLayersParameter.Value.Value; }
90      set {
91        if (value < 0 || value > 2) throw new ArgumentException("The number of hidden layers should be set to 0, 1, or 2.", "HiddenLayers");
92        HiddenLayersParameter.Value = (from v in HiddenLayersParameter.ValidValues
93                                       where v.Value == value
94                                       select v)
95                                      .Single();
96      }
97    }
98    public int NodesInFirstHiddenLayer {
99      get { return NodesInFirstHiddenLayerParameter.Value.Value; }
100      set {
101        if (value < 1) throw new ArgumentException("The number of nodes in the first hidden layer must be at least one.", "NodesInFirstHiddenLayer");
102        NodesInFirstHiddenLayerParameter.Value.Value = value;
103      }
104    }
105    public int NodesInSecondHiddenLayer {
106      get { return NodesInSecondHiddenLayerParameter.Value.Value; }
107      set {
108        if (value < 1) throw new ArgumentException("The number of nodes in the first second layer must be at least one.", "NodesInSecondHiddenLayer");
109        NodesInSecondHiddenLayerParameter.Value.Value = value;
110      }
111    }
112    public int Restarts {
113      get { return RestartsParameter.Value.Value; }
114      set {
115        if (value < 0) throw new ArgumentException("The number of restarts must be positive.", "Restarts");
116        RestartsParameter.Value.Value = value;
117      }
118    }
119    #endregion
120
121
122    [StorableConstructor]
123    private NeuralNetworkEnsembleRegression(bool deserializing) : base(deserializing) { }
124    private NeuralNetworkEnsembleRegression(NeuralNetworkEnsembleRegression original, Cloner cloner)
125      : base(original, cloner) {
126    }
127    public NeuralNetworkEnsembleRegression()
128      : base() {
129        var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] {
130        (IntValue)new IntValue(0).AsReadOnly(),
131        (IntValue)new IntValue(1).AsReadOnly(),
132        (IntValue)new IntValue(2).AsReadOnly() });
133      var selectedHiddenLayerValue = (from v in validHiddenLayerValues
134                                      where v.Value == 1
135                                      select v)
136                                     .Single();
137      Parameters.Add(new FixedValueParameter<IntValue>(EnsembleSizeParameterName, "The number of simple neural network models in the ensemble. A good value is 10.", new IntValue(10)));
138      Parameters.Add(new FixedValueParameter<DoubleValue>(DecayParameterName, "The decay parameter for the training phase of the neural network. This parameter determines the strengh of regularization and should be set to a value between 0.001 (weak regularization) to 100 (very strong regularization). The correct value should be determined via cross-validation.", new DoubleValue(0.001)));
139      Parameters.Add(new ConstrainedValueParameter<IntValue>(HiddenLayersParameterName, "The number of hidden layers for the neural network (0, 1, or 2)", validHiddenLayerValues, selectedHiddenLayerValue));
140      Parameters.Add(new FixedValueParameter<IntValue>(NodesInFirstHiddenLayerParameterName, "The number of nodes in the first hidden layer. The value should be rather large (30-100 nodes) in order to make the network highly flexible and run into the early stopping criterion). This value is not used if the number of hidden layers is zero.", new IntValue(100)));
141      Parameters.Add(new FixedValueParameter<IntValue>(NodesInSecondHiddenLayerParameterName, "The number of nodes in the second hidden layer. This value is not used if the number of hidden layers is zero or one.", new IntValue(100)));
142      Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of restarts for learning.", new IntValue(2)));
143
144      HiddenLayersParameter.Hidden = true;
145      NodesInFirstHiddenLayerParameter.Hidden = true;
146      NodesInSecondHiddenLayerParameter.Hidden = true;
147      RestartsParameter.Hidden = true;
148
149      Problem = new RegressionProblem();
150    }
151    [StorableHook(HookType.AfterDeserialization)]
152    private void AfterDeserialization() { }
153
154    public override IDeepCloneable Clone(Cloner cloner) {
155      return new NeuralNetworkEnsembleRegression(this, cloner);
156    }
157
158    #region neural network ensemble
159    protected override void Run() {
160      double rmsError, avgRelError;
161      var solution = CreateNeuralNetworkEnsembleRegressionSolution(Problem.ProblemData, EnsembleSize, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError);
162      Results.Add(new Result(NeuralNetworkEnsembleRegressionModelResultName, "The neural network ensemble regression solution.", solution));
163      Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the neural network ensemble regression solution on the training set.", new DoubleValue(rmsError)));
164      Results.Add(new Result("Average relative error", "The average of relative errors of the neural network ensemble regression solution on the training set.", new PercentValue(avgRelError)));
165    }
166
167    public static IRegressionSolution CreateNeuralNetworkEnsembleRegressionSolution(IRegressionProblemData problemData, int ensembleSize, int nLayers, int nHiddenNodes1, int nHiddenNodes2, double decay, int restarts,
168      out double rmsError, out double avgRelError) {
169      Dataset dataset = problemData.Dataset;
170      string targetVariable = problemData.TargetVariable;
171      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
172      IEnumerable<int> rows = problemData.TrainingIndices;
173      double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
174      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
175        throw new NotSupportedException("Neural network ensemble regression does not support NaN or infinity values in the input dataset.");
176
177      alglib.mlpensemble mlpEnsemble = null;
178      if (nLayers == 0) {
179        alglib.mlpecreate0(allowedInputVariables.Count(), 1, ensembleSize, out mlpEnsemble);
180      } else if (nLayers == 1) {
181        alglib.mlpecreate1(allowedInputVariables.Count(), nHiddenNodes1, 1, ensembleSize, out mlpEnsemble);
182      } else if (nLayers == 2) {
183        alglib.mlpecreate2(allowedInputVariables.Count(), nHiddenNodes1, nHiddenNodes2, 1, ensembleSize, out mlpEnsemble);
184      } else throw new ArgumentException("Number of layers must be zero, one, or two.", "nLayers");
185      alglib.mlpreport rep;
186      int nRows = inputMatrix.GetLength(0);
187
188      int info;
189      alglib.mlpetraines(mlpEnsemble, inputMatrix, nRows, decay, restarts, out info, out rep);
190      if (info != 6) throw new ArgumentException("Error in calculation of neural network ensemble regression solution");
191
192      rmsError = alglib.mlpermserror(mlpEnsemble, inputMatrix, nRows);
193      avgRelError = alglib.mlpeavgrelerror(mlpEnsemble, inputMatrix, nRows);
194
195      return new NeuralNetworkEnsembleRegressionSolution((IRegressionProblemData)problemData.Clone(), new NeuralNetworkEnsembleModel(mlpEnsemble, targetVariable, allowedInputVariables));
196    }
197    #endregion
198  }
199}
Note: See TracBrowser for help on using the repository browser.