Free cookie consent management tool by TermsFeed Policy Generator

source: branches/MemPRAlgorithm/HeuristicLab.Algorithms.MemPR/3.3/Permutation/SolutionModel/Univariate/UnivariateRelativeModel.cs @ 14466

Last change on this file since 14466 was 14450, checked in by abeham, 8 years ago

#2701: working on MemPR implementation

File size: 4.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Algorithms.MemPR.Interfaces;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.PermutationEncoding;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Random;
31
32namespace HeuristicLab.Algorithms.MemPR.Permutation.SolutionModel.Univariate {
33  [Item("Univariate solution model (Permutation.Relative)", "")]
34  [StorableClass]
35  public sealed class UnivariateRelativeModel : Item, ISolutionModel<Encodings.PermutationEncoding.Permutation> {
36    [Storable]
37    public IntMatrix Probabilities { get; set; }
38
39    [Storable]
40    public IRandom Random { get; set; }
41
42    [Storable]
43    public PermutationTypes PermutationType { get; set; }
44
45    [StorableConstructor]
46    private UnivariateRelativeModel(bool deserializing) : base(deserializing) { }
47    private UnivariateRelativeModel(UnivariateRelativeModel original, Cloner cloner)
48      : base(original, cloner) {
49      Probabilities = cloner.Clone(original.Probabilities);
50      Random = cloner.Clone(original.Random);
51      PermutationType = original.PermutationType;
52    }
53    public UnivariateRelativeModel(IRandom random, int[,] probabilities, PermutationTypes permutationType) {
54      Probabilities = new IntMatrix(probabilities);
55      Random = random;
56      PermutationType = permutationType;
57    }
58    public UnivariateRelativeModel(IRandom random, IntMatrix probabilties, PermutationTypes permutationType) {
59      Probabilities = probabilties;
60      Random = random;
61      PermutationType = permutationType;
62    }
63
64    public override IDeepCloneable Clone(Cloner cloner) {
65      return new UnivariateRelativeModel(this, cloner);
66    }
67
68    public Encodings.PermutationEncoding.Permutation Sample() {
69      var N = Probabilities.Rows;
70      var next = Random.Next(N);
71      var child = new Encodings.PermutationEncoding.Permutation(PermutationType, N);
72      child[0] = next;
73      var open = Enumerable.Range(0, N).Where(x => x != next).Shuffle(Random).ToList();
74      for (var i = 1; i < N - 1; i++) {
75        var total = 0.0;
76        for (var j = 0; j < open.Count; j++) {
77          total += Probabilities[next, open[j]] + 1.0 / N;
78        }
79        var ball = Random.NextDouble() * total;
80        for (var j = 0; j < open.Count; j++) {
81          ball -= Probabilities[next, open[j]] + 1.0 / N;
82          if (ball <= 0.0) {
83            child[i] = open[j];
84            next = open[j];
85            open.RemoveAt(j);
86            break;
87          }
88        }
89      }
90      child[N - 1] = open[0];
91      return child;
92    }
93
94    public static UnivariateRelativeModel CreateDirected(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) {
95      var model = new int[N, N];
96      for (var i = 0; i < pop.Count; i++) {
97        for (var j = 0; j < N - 1; j++) {
98          for (var k = j + 1; k < N; k++) {
99            model[pop[i][j], pop[i][k]]++;
100          }
101          model[pop[i][N - 1], pop[i][0]]++;
102        }
103      }
104      return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeDirected);
105    }
106
107    public static UnivariateRelativeModel CreateUndirected(IRandom random, IList<Encodings.PermutationEncoding.Permutation> pop, int N) {
108      var model = new int[N, N];
109      for (var i = 0; i < pop.Count; i++) {
110        for (var j = 0; j < N - 1; j++) {
111          for (var k = j + 1; k < N; k++) {
112            model[pop[i][j], pop[i][k]]++;
113            model[pop[i][k], pop[i][j]]++;
114          }
115          model[pop[i][0], pop[i][N - 1]]++;
116          model[pop[i][N - 1], pop[i][0]]++;
117        }
118      }
119      return new UnivariateRelativeModel(random, model, PermutationTypes.RelativeUndirected);
120    }
121  }
122}
Note: See TracBrowser for help on using the repository browser.