Free cookie consent management tool by TermsFeed Policy Generator

source: branches/LearningClassifierSystems/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/DiscriminantFunctionClassificationSolution.cs @ 10187

Last change on this file since 10187 was 8723, checked in by mkommend, 12 years ago

#1964: Added new results to symbolic classification and regression solutions. Additionally, the way results are calculated was refactored and unified.

File size: 5.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27
28namespace HeuristicLab.Problems.DataAnalysis {
29  /// <summary>
30  /// Represents a classification solution that uses a discriminant function and classification thresholds.
31  /// </summary>
32  [StorableClass]
33  [Item("DiscriminantFunctionClassificationSolution", "Represents a classification solution that uses a discriminant function and classification thresholds.")]
34  public class DiscriminantFunctionClassificationSolution : DiscriminantFunctionClassificationSolutionBase {
35    protected readonly Dictionary<int, double> valueEvaluationCache;
36    protected readonly Dictionary<int, double> classValueEvaluationCache;
37
38    [StorableConstructor]
39    protected DiscriminantFunctionClassificationSolution(bool deserializing)
40      : base(deserializing) {
41      valueEvaluationCache = new Dictionary<int, double>();
42      classValueEvaluationCache = new Dictionary<int, double>();
43    }
44    protected DiscriminantFunctionClassificationSolution(DiscriminantFunctionClassificationSolution original, Cloner cloner)
45      : base(original, cloner) {
46      valueEvaluationCache = new Dictionary<int, double>(original.valueEvaluationCache);
47      classValueEvaluationCache = new Dictionary<int, double>(original.classValueEvaluationCache);
48    }
49    public DiscriminantFunctionClassificationSolution(IDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
50      : base(model, problemData) {
51      valueEvaluationCache = new Dictionary<int, double>();
52      classValueEvaluationCache = new Dictionary<int, double>();
53      CalculateRegressionResults();
54      CalculateClassificationResults();
55    }
56
57    public override IDeepCloneable Clone(Cloner cloner) {
58      return new DiscriminantFunctionClassificationSolution(this, cloner);
59    }
60
61    public override IEnumerable<double> EstimatedClassValues {
62      get { return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
63    }
64    public override IEnumerable<double> EstimatedTrainingClassValues {
65      get { return GetEstimatedClassValues(ProblemData.TrainingIndices); }
66    }
67    public override IEnumerable<double> EstimatedTestClassValues {
68      get { return GetEstimatedClassValues(ProblemData.TestIndices); }
69    }
70
71    public override IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
72      var rowsToEvaluate = rows.Except(classValueEvaluationCache.Keys);
73      var rowsEnumerator = rowsToEvaluate.GetEnumerator();
74      var valuesEnumerator = Model.GetEstimatedClassValues(ProblemData.Dataset, rowsToEvaluate).GetEnumerator();
75
76      while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
77        classValueEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
78      }
79
80      return rows.Select(row => classValueEvaluationCache[row]);
81    }
82
83
84    public override IEnumerable<double> EstimatedValues {
85      get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
86    }
87    public override IEnumerable<double> EstimatedTrainingValues {
88      get { return GetEstimatedValues(ProblemData.TrainingIndices); }
89    }
90    public override IEnumerable<double> EstimatedTestValues {
91      get { return GetEstimatedValues(ProblemData.TestIndices); }
92    }
93
94    public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
95      var rowsToEvaluate = rows.Except(valueEvaluationCache.Keys);
96      var rowsEnumerator = rowsToEvaluate.GetEnumerator();
97      var valuesEnumerator = Model.GetEstimatedValues(ProblemData.Dataset, rowsToEvaluate).GetEnumerator();
98
99      while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
100        valueEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
101      }
102
103      return rows.Select(row => valueEvaluationCache[row]);
104    }
105
106    protected override void OnModelChanged() {
107      valueEvaluationCache.Clear();
108      classValueEvaluationCache.Clear();
109      base.OnModelChanged();
110    }
111    protected override void OnModelThresholdsChanged(System.EventArgs e) {
112      classValueEvaluationCache.Clear();
113      base.OnModelThresholdsChanged(e);
114    }
115    protected override void OnProblemDataChanged() {
116      valueEvaluationCache.Clear();
117      classValueEvaluationCache.Clear();
118      base.OnProblemDataChanged();
119    }
120  }
121}
Note: See TracBrowser for help on using the repository browser.