[8941] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[9154] | 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Analysis;
|
---|
[8941] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
[9089] | 28 | using HeuristicLab.Encodings.ConditionActionEncoding;
|
---|
[9154] | 29 | using HeuristicLab.Operators;
|
---|
[8941] | 30 | using HeuristicLab.Optimization;
|
---|
[9154] | 31 | using HeuristicLab.Optimization.Operators;
|
---|
[8941] | 32 | using HeuristicLab.Parameters;
|
---|
| 33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 34 | using HeuristicLab.Random;
|
---|
| 35 |
|
---|
| 36 | namespace HeuristicLab.Algorithms.LearningClassifierSystems {
|
---|
| 37 | /// <summary>
|
---|
| 38 | /// A learning classifier system.
|
---|
| 39 | /// </summary>
|
---|
[9494] | 40 | [Item("XCS", "A learning classifier system")]
|
---|
[8941] | 41 | [Creatable("Algorithms")]
|
---|
| 42 | [StorableClass]
|
---|
[9089] | 43 | public sealed class LearningClassifierSystem : HeuristicOptimizationEngineAlgorithm, IStorableContent {
|
---|
[8941] | 44 | public string Filename { get; set; }
|
---|
| 45 |
|
---|
| 46 | #region Problem Properties
|
---|
| 47 | public override Type ProblemType {
|
---|
[9089] | 48 | get { return typeof(IConditionActionProblem); }
|
---|
[8941] | 49 | }
|
---|
[9089] | 50 | public new IConditionActionProblem Problem {
|
---|
| 51 | get { return (IConditionActionProblem)base.Problem; }
|
---|
[8941] | 52 | set { base.Problem = value; }
|
---|
| 53 | }
|
---|
| 54 | #endregion
|
---|
| 55 |
|
---|
| 56 | #region Parameter Properties
|
---|
| 57 | private ValueParameter<IntValue> SeedParameter {
|
---|
| 58 | get { return (ValueParameter<IntValue>)Parameters["Seed"]; }
|
---|
| 59 | }
|
---|
| 60 | private ValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 61 | get { return (ValueParameter<BoolValue>)Parameters["SetSeedRandomly"]; }
|
---|
| 62 | }
|
---|
[9089] | 63 | private ValueParameter<BoolValue> CreateInitialPopulationParameter {
|
---|
| 64 | get { return (ValueParameter<BoolValue>)Parameters["CreateInitialPopulation"]; }
|
---|
| 65 | }
|
---|
[8941] | 66 | private ValueParameter<IntValue> PopulationSizeParameter {
|
---|
[9089] | 67 | get { return (ValueParameter<IntValue>)Parameters["N"]; }
|
---|
[8941] | 68 | }
|
---|
[9089] | 69 | private ValueParameter<PercentValue> BetaParameter {
|
---|
| 70 | get { return (ValueParameter<PercentValue>)Parameters["Beta"]; }
|
---|
[8941] | 71 | }
|
---|
[9089] | 72 | private ValueParameter<PercentValue> AlphaParameter {
|
---|
| 73 | get { return (ValueParameter<PercentValue>)Parameters["Alpha"]; }
|
---|
[8941] | 74 | }
|
---|
[9089] | 75 | private ValueParameter<DoubleValue> ErrorZeroParameter {
|
---|
| 76 | get { return (ValueParameter<DoubleValue>)Parameters["ErrorZero"]; }
|
---|
[8941] | 77 | }
|
---|
[9089] | 78 | private ValueParameter<DoubleValue> PowerParameter {
|
---|
| 79 | get { return (ValueParameter<DoubleValue>)Parameters["v"]; }
|
---|
[8941] | 80 | }
|
---|
[9089] | 81 | private ValueParameter<PercentValue> GammaParameter {
|
---|
| 82 | get { return (ValueParameter<PercentValue>)Parameters["Gamma"]; }
|
---|
| 83 | }
|
---|
| 84 | private ValueParameter<PercentValue> CrossoverProbabilityParameter {
|
---|
| 85 | get { return (ValueParameter<PercentValue>)Parameters["CrossoverProbability"]; }
|
---|
| 86 | }
|
---|
| 87 | private ValueParameter<PercentValue> MutationProbabilityParameter {
|
---|
| 88 | get { return (ValueParameter<PercentValue>)Parameters["MutationProbability"]; }
|
---|
| 89 | }
|
---|
| 90 | private ValueParameter<IntValue> ThetaGAParameter {
|
---|
| 91 | get { return (ValueParameter<IntValue>)Parameters["ThetaGA"]; }
|
---|
| 92 | }
|
---|
| 93 | private ValueParameter<IntValue> ThetaDeletionParameter {
|
---|
| 94 | get { return (ValueParameter<IntValue>)Parameters["ThetaDeletion"]; }
|
---|
| 95 | }
|
---|
| 96 | private ValueParameter<IntValue> ThetaSubsumptionParameter {
|
---|
| 97 | get { return (ValueParameter<IntValue>)Parameters["ThetaSubsumption"]; }
|
---|
| 98 | }
|
---|
| 99 | private ValueParameter<PercentValue> DeltaParameter {
|
---|
| 100 | get { return (ValueParameter<PercentValue>)Parameters["Delta"]; }
|
---|
| 101 | }
|
---|
| 102 | private ValueParameter<PercentValue> ExplorationProbabilityParameter {
|
---|
| 103 | get { return (ValueParameter<PercentValue>)Parameters["ExplorationProbability"]; }
|
---|
| 104 | }
|
---|
| 105 | private ValueParameter<BoolValue> DoGASubsumptionParameter {
|
---|
| 106 | get { return (ValueParameter<BoolValue>)Parameters["DoGASubsumption"]; }
|
---|
| 107 | }
|
---|
| 108 | private ValueParameter<BoolValue> DoActionSetSubsumptionParameter {
|
---|
| 109 | get { return (ValueParameter<BoolValue>)Parameters["DoActionSetSubsumption"]; }
|
---|
| 110 | }
|
---|
[9154] | 111 | private ValueParameter<MultiAnalyzer> AnalyzerParameter {
|
---|
| 112 | get { return (ValueParameter<MultiAnalyzer>)Parameters["Analyzer"]; }
|
---|
| 113 | }
|
---|
[9175] | 114 | private ValueParameter<MultiAnalyzer> FinalAnalyzerParameter {
|
---|
| 115 | get { return (ValueParameter<MultiAnalyzer>)Parameters["FinalAnalyzer"]; }
|
---|
| 116 | }
|
---|
[9154] | 117 | private ValueParameter<IntValue> MaxIterationsParameter {
|
---|
| 118 | get { return (ValueParameter<IntValue>)Parameters["MaxIterations"]; }
|
---|
| 119 | }
|
---|
[9467] | 120 | public IConstrainedValueParameter<ISelector> SelectorParameter {
|
---|
| 121 | get { return (IConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
|
---|
| 122 | }
|
---|
[9204] | 123 | public IConstrainedValueParameter<ICrossover> CrossoverParameter {
|
---|
| 124 | get { return (IConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
|
---|
| 125 | }
|
---|
| 126 | public IConstrainedValueParameter<IManipulator> MutatorParameter {
|
---|
| 127 | get { return (IConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
|
---|
| 128 | }
|
---|
[9242] | 129 | public ValueParameter<IntValue> AnalyzeInIterationParameter {
|
---|
| 130 | get { return (ValueParameter<IntValue>)Parameters["AnalyzeInIteration"]; }
|
---|
| 131 | }
|
---|
[8941] | 132 | #endregion
|
---|
| 133 |
|
---|
| 134 | #region Properties
|
---|
| 135 | public IntValue Seed {
|
---|
| 136 | get { return SeedParameter.Value; }
|
---|
| 137 | set { SeedParameter.Value = value; }
|
---|
| 138 | }
|
---|
| 139 | public BoolValue SetSeedRandomly {
|
---|
| 140 | get { return SetSeedRandomlyParameter.Value; }
|
---|
| 141 | set { SetSeedRandomlyParameter.Value = value; }
|
---|
| 142 | }
|
---|
[9089] | 143 | public BoolValue CreateInitialPopulation {
|
---|
| 144 | get { return CreateInitialPopulationParameter.Value; }
|
---|
| 145 | set { CreateInitialPopulationParameter.Value = value; }
|
---|
| 146 | }
|
---|
[8941] | 147 | public IntValue PopulationSize {
|
---|
| 148 | get { return PopulationSizeParameter.Value; }
|
---|
| 149 | set { PopulationSizeParameter.Value = value; }
|
---|
| 150 | }
|
---|
[9089] | 151 | public PercentValue Beta {
|
---|
| 152 | get { return BetaParameter.Value; }
|
---|
| 153 | set { BetaParameter.Value = value; }
|
---|
| 154 | }
|
---|
| 155 | public PercentValue Alpha {
|
---|
| 156 | get { return AlphaParameter.Value; }
|
---|
| 157 | set { AlphaParameter.Value = value; }
|
---|
| 158 | }
|
---|
| 159 | public DoubleValue ErrorZero {
|
---|
| 160 | get { return ErrorZeroParameter.Value; }
|
---|
| 161 | set { ErrorZeroParameter.Value = value; }
|
---|
| 162 | }
|
---|
| 163 | public DoubleValue Power {
|
---|
| 164 | get { return PowerParameter.Value; }
|
---|
| 165 | set { PowerParameter.Value = value; }
|
---|
| 166 | }
|
---|
| 167 | public PercentValue Gamma {
|
---|
| 168 | get { return GammaParameter.Value; }
|
---|
| 169 | set { GammaParameter.Value = value; }
|
---|
| 170 | }
|
---|
| 171 | public PercentValue CrossoverProbability {
|
---|
| 172 | get { return CrossoverProbabilityParameter.Value; }
|
---|
| 173 | set { CrossoverProbabilityParameter.Value = value; }
|
---|
| 174 | }
|
---|
| 175 | public PercentValue MutationProbability {
|
---|
| 176 | get { return MutationProbabilityParameter.Value; }
|
---|
| 177 | set { MutationProbabilityParameter.Value = value; }
|
---|
| 178 | }
|
---|
| 179 | public IntValue ThetaGA {
|
---|
| 180 | get { return ThetaGAParameter.Value; }
|
---|
| 181 | set { ThetaGAParameter.Value = value; }
|
---|
| 182 | }
|
---|
| 183 | public IntValue ThetaDeletion {
|
---|
| 184 | get { return ThetaDeletionParameter.Value; }
|
---|
| 185 | set { ThetaDeletionParameter.Value = value; }
|
---|
| 186 | }
|
---|
| 187 | public IntValue ThetaSubsumption {
|
---|
| 188 | get { return ThetaSubsumptionParameter.Value; }
|
---|
| 189 | set { ThetaSubsumptionParameter.Value = value; }
|
---|
| 190 | }
|
---|
| 191 | public PercentValue Delta {
|
---|
| 192 | get { return DeltaParameter.Value; }
|
---|
| 193 | set { DeltaParameter.Value = value; }
|
---|
| 194 | }
|
---|
| 195 | public PercentValue ExplorationProbability {
|
---|
| 196 | get { return ExplorationProbabilityParameter.Value; }
|
---|
| 197 | set { ExplorationProbabilityParameter.Value = value; }
|
---|
| 198 | }
|
---|
| 199 | public BoolValue DoGASubsumption {
|
---|
| 200 | get { return DoGASubsumptionParameter.Value; }
|
---|
| 201 | set { DoGASubsumptionParameter.Value = value; }
|
---|
| 202 | }
|
---|
| 203 | public BoolValue DoActionSetSubsumption {
|
---|
| 204 | get { return DoActionSetSubsumptionParameter.Value; }
|
---|
| 205 | set { DoActionSetSubsumptionParameter.Value = value; }
|
---|
| 206 | }
|
---|
[9154] | 207 | public IntValue MaxIterations {
|
---|
| 208 | get { return MaxIterationsParameter.Value; }
|
---|
| 209 | set { MaxIterationsParameter.Value = value; }
|
---|
| 210 | }
|
---|
| 211 | public MultiAnalyzer Analyzer {
|
---|
| 212 | get { return AnalyzerParameter.Value; }
|
---|
| 213 | set { AnalyzerParameter.Value = value; }
|
---|
| 214 | }
|
---|
[9175] | 215 | public MultiAnalyzer FinalAnalyzer {
|
---|
| 216 | get { return FinalAnalyzerParameter.Value; }
|
---|
| 217 | set { FinalAnalyzerParameter.Value = value; }
|
---|
| 218 | }
|
---|
[9467] | 219 | public ISelector Selector {
|
---|
| 220 | get { return SelectorParameter.Value; }
|
---|
| 221 | set { SelectorParameter.Value = value; }
|
---|
| 222 | }
|
---|
[9204] | 223 | public ICrossover Crossover {
|
---|
| 224 | get { return CrossoverParameter.Value; }
|
---|
| 225 | set { CrossoverParameter.Value = value; }
|
---|
| 226 | }
|
---|
| 227 | public IManipulator Mutator {
|
---|
| 228 | get { return MutatorParameter.Value; }
|
---|
| 229 | set { MutatorParameter.Value = value; }
|
---|
| 230 | }
|
---|
[9089] | 231 | private RandomCreator RandomCreator {
|
---|
| 232 | get { return (RandomCreator)OperatorGraph.InitialOperator; }
|
---|
| 233 | }
|
---|
| 234 | public LearningClassifierSystemMainLoop MainLoop {
|
---|
[9154] | 235 | get { return FindMainLoop(RandomCreator.Successor); }
|
---|
[9089] | 236 | }
|
---|
[8941] | 237 | #endregion
|
---|
| 238 |
|
---|
| 239 | public LearningClassifierSystem()
|
---|
| 240 | : base() {
|
---|
| 241 | #region Create parameters
|
---|
| 242 | Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
|
---|
| 243 | Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
|
---|
[9089] | 244 | Parameters.Add(new ValueParameter<BoolValue>("CreateInitialPopulation", "Specifies if a population should be created at the beginning of the algorithm.", new BoolValue(false)));
|
---|
| 245 | Parameters.Add(new ValueParameter<IntValue>("N", "Max size of the population of solutions.", new IntValue(100)));
|
---|
| 246 | Parameters.Add(new ValueParameter<PercentValue>("Beta", "Learning rate", new PercentValue(0.1)));
|
---|
| 247 | Parameters.Add(new ValueParameter<PercentValue>("Alpha", "", new PercentValue(0.1)));
|
---|
| 248 | Parameters.Add(new ValueParameter<DoubleValue>("ErrorZero", "The error below which classifiers are considered to have equal accuracy", new DoubleValue(10)));
|
---|
| 249 | Parameters.Add(new ValueParameter<DoubleValue>("v", "Power parameter", new DoubleValue(5)));
|
---|
| 250 | Parameters.Add(new ValueParameter<PercentValue>("Gamma", "Discount factor", new PercentValue(0.71)));
|
---|
| 251 | Parameters.Add(new ValueParameter<PercentValue>("CrossoverProbability", "Probability of crossover", new PercentValue(0.9)));
|
---|
| 252 | Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "Probability of mutation", new PercentValue(0.05)));
|
---|
| 253 | Parameters.Add(new ValueParameter<IntValue>("ThetaGA", "GA threshold. GA is applied in a set when the average time since the last GA is greater than ThetaGA.", new IntValue(25)));
|
---|
| 254 | Parameters.Add(new ValueParameter<IntValue>("ThetaDeletion", "Deletion threshold. If the experience of a classifier is greater than ThetaDeletion, its fitness may be considered in its probability of deletion.", new IntValue(20)));
|
---|
| 255 | Parameters.Add(new ValueParameter<IntValue>("ThetaSubsumption", "Subsumption threshold. The experience of a classifier must be greater than TheatSubsumption to be able to subsume another classifier.", new IntValue(20)));
|
---|
| 256 | Parameters.Add(new ValueParameter<PercentValue>("Delta", "Delta specifies the fraction of mean fitness in [P] below which the fitness of a classifier may be considered in its probability of deletion", new PercentValue(0.1)));
|
---|
| 257 | Parameters.Add(new ValueParameter<PercentValue>("ExplorationProbability", "Probability of selecting the action uniform randomly", new PercentValue(0.5)));
|
---|
| 258 | Parameters.Add(new ValueParameter<BoolValue>("DoGASubsumption", "Specifies if offsprings are tested for possible logical subsumption by parents.", new BoolValue(true)));
|
---|
| 259 | Parameters.Add(new ValueParameter<BoolValue>("DoActionSetSubsumption", "Specifies if action set is tested for subsuming classifiers.", new BoolValue(true)));
|
---|
[9154] | 260 | Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
|
---|
[9175] | 261 | Parameters.Add(new ValueParameter<MultiAnalyzer>("FinalAnalyzer", "The operator used to analyze the last generation.", new MultiAnalyzer()));
|
---|
[9154] | 262 | Parameters.Add(new ValueParameter<IntValue>("MaxIterations", "The maximum number of iterations.", new IntValue(1000)));
|
---|
[9467] | 263 | Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions."));
|
---|
[9204] | 264 | Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
|
---|
| 265 | Parameters.Add(new ConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
|
---|
[9242] | 266 | Parameters.Add(new ValueParameter<IntValue>("AnalyzeInIteration", "", new IntValue(50)));
|
---|
[8941] | 267 | #endregion
|
---|
| 268 |
|
---|
| 269 | #region Create operators
|
---|
| 270 | RandomCreator randomCreator = new RandomCreator();
|
---|
[9089] | 271 |
|
---|
[9154] | 272 | ResultsCollector resultsCollector = new ResultsCollector();
|
---|
[8941] | 273 | LearningClassifierSystemMainLoop mainLoop = new LearningClassifierSystemMainLoop();
|
---|
| 274 |
|
---|
| 275 | randomCreator.RandomParameter.ActualName = "Random";
|
---|
| 276 | randomCreator.SeedParameter.ActualName = SeedParameter.Name;
|
---|
| 277 | randomCreator.SeedParameter.Value = null;
|
---|
| 278 | randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
|
---|
| 279 | randomCreator.SetSeedRandomlyParameter.Value = null;
|
---|
[9154] | 280 |
|
---|
| 281 | resultsCollector.ResultsParameter.ActualName = "Results";
|
---|
| 282 |
|
---|
| 283 | mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
|
---|
[9175] | 284 | mainLoop.FinalAnalyzerParameter.ActualName = FinalAnalyzerParameter.Name;
|
---|
[9154] | 285 | mainLoop.MaxIterationsParameter.ActualName = MaxIterationsParameter.Name;
|
---|
[9467] | 286 | mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
|
---|
[9204] | 287 | mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
|
---|
| 288 | mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
|
---|
| 289 | mainLoop.CrossoverProbabilityParameter.ActualName = CrossoverProbabilityParameter.Name;
|
---|
[9242] | 290 | mainLoop.AnalyzeInIterationParameter.ActualName = AnalyzeInIterationParameter.Name;
|
---|
[8941] | 291 | #endregion
|
---|
| 292 |
|
---|
| 293 | #region Create operator graph
|
---|
| 294 | OperatorGraph.InitialOperator = randomCreator;
|
---|
[9154] | 295 | randomCreator.Successor = resultsCollector;
|
---|
| 296 | resultsCollector.Successor = mainLoop;
|
---|
[8941] | 297 | #endregion
|
---|
[9154] | 298 |
|
---|
| 299 | UpdateAnalyzers();
|
---|
[8941] | 300 | }
|
---|
[9089] | 301 | private LearningClassifierSystem(LearningClassifierSystem original, Cloner cloner)
|
---|
[8941] | 302 | : base(original, cloner) {
|
---|
| 303 | }
|
---|
| 304 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 305 | return new LearningClassifierSystem(this, cloner);
|
---|
| 306 | }
|
---|
| 307 | [StorableConstructor]
|
---|
| 308 | private LearningClassifierSystem(bool deserializing) : base(deserializing) { }
|
---|
[9089] | 309 |
|
---|
| 310 | protected override void OnProblemChanged() {
|
---|
| 311 | if (Problem != null) {
|
---|
| 312 | ParameterizeEvaluator(Problem.Evaluator);
|
---|
| 313 | MainLoop.SetCurrentProblem(Problem);
|
---|
[9467] | 314 | UpdateSelectors();
|
---|
[9204] | 315 | UpdateCrossovers();
|
---|
| 316 | UpdateMutators();
|
---|
[9154] | 317 | UpdateAnalyzers();
|
---|
[9467] | 318 | ParameterizeSelectors();
|
---|
[9204] | 319 | ParameterizeManipulator();
|
---|
[9089] | 320 | }
|
---|
| 321 | base.OnProblemChanged();
|
---|
| 322 | }
|
---|
[9204] | 323 |
|
---|
[9089] | 324 | protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
|
---|
| 325 | ParameterizeEvaluator(Problem.Evaluator);
|
---|
| 326 | MainLoop.SetCurrentProblem(Problem);
|
---|
| 327 | base.Problem_EvaluatorChanged(sender, e);
|
---|
| 328 | }
|
---|
| 329 | protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
|
---|
| 330 | MainLoop.SetCurrentProblem(Problem);
|
---|
| 331 | base.Problem_SolutionCreatorChanged(sender, e);
|
---|
| 332 | }
|
---|
[9154] | 333 | protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
|
---|
[9467] | 334 | UpdateSelectors();
|
---|
[9204] | 335 | UpdateCrossovers();
|
---|
| 336 | UpdateMutators();
|
---|
[9154] | 337 | UpdateAnalyzers();
|
---|
[9467] | 338 | ParameterizeSelectors();
|
---|
[9204] | 339 | ParameterizeManipulator();
|
---|
[9154] | 340 | base.Problem_OperatorsChanged(sender, e);
|
---|
| 341 | }
|
---|
[9089] | 342 |
|
---|
[9467] | 343 | private void ParameterizeSelectors() {
|
---|
| 344 | foreach (ISelector selector in SelectorParameter.ValidValues) {
|
---|
| 345 | selector.CopySelected = new BoolValue(true);
|
---|
| 346 | selector.NumberOfSelectedSubScopesParameter.Value = new IntValue(4);
|
---|
| 347 | selector.NumberOfSelectedSubScopesParameter.Hidden = true;
|
---|
| 348 | ParameterizeStochasticOperator(selector);
|
---|
| 349 | }
|
---|
| 350 | if (Problem != null) {
|
---|
| 351 | foreach (IXCSSelector selector in SelectorParameter.ValidValues.OfType<IXCSSelector>()) {
|
---|
| 352 | selector.NumerosityParameter.ActualName = Problem.Evaluator.NumerosityParameter.ActualName;
|
---|
| 353 | selector.NumerosityParameter.Hidden = true;
|
---|
| 354 | }
|
---|
| 355 | foreach (ISingleObjectiveSelector selector in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
|
---|
| 356 | selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
|
---|
| 357 | selector.MaximizationParameter.Hidden = true;
|
---|
| 358 | selector.QualityParameter.ActualName = Problem.Evaluator.FitnessParameter.ActualName;
|
---|
| 359 | selector.QualityParameter.Hidden = true;
|
---|
| 360 | }
|
---|
| 361 | }
|
---|
| 362 | }
|
---|
| 363 | private void ParameterizeManipulator() {
|
---|
| 364 | foreach (var op in Problem.Operators.OfType<IProbabilityMutatorOperator>()) {
|
---|
| 365 | op.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
|
---|
| 366 | }
|
---|
| 367 | }
|
---|
[9089] | 368 | private void ParameterizeEvaluator(IXCSEvaluator evaluator) {
|
---|
| 369 | evaluator.ActualTimeParameter.ActualName = "Iteration";
|
---|
| 370 | evaluator.BetaParameter.ActualName = BetaParameter.Name;
|
---|
| 371 | evaluator.AlphaParameter.ActualName = AlphaParameter.Name;
|
---|
| 372 | evaluator.PowerParameter.ActualName = PowerParameter.Name;
|
---|
| 373 | evaluator.ErrorZeroParameter.ActualName = ErrorZeroParameter.Name;
|
---|
| 374 | }
|
---|
[9467] | 375 | private void ParameterizeStochasticOperator(IOperator op) {
|
---|
| 376 | IStochasticOperator stochasticOp = op as IStochasticOperator;
|
---|
| 377 | if (stochasticOp != null) {
|
---|
| 378 | stochasticOp.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
|
---|
| 379 | stochasticOp.RandomParameter.Hidden = true;
|
---|
| 380 | }
|
---|
| 381 | }
|
---|
[9154] | 382 |
|
---|
[9467] | 383 | private void UpdateSelectors() {
|
---|
| 384 | ISelector oldSelector = SelectorParameter.Value;
|
---|
| 385 | SelectorParameter.ValidValues.Clear();
|
---|
| 386 | ISelector defaultSelector = Problem.Operators.OfType<IXCSSelector>().FirstOrDefault();
|
---|
| 387 | if (defaultSelector == null) {
|
---|
| 388 | defaultSelector = Problem.Operators.OfType<ISelector>().FirstOrDefault();
|
---|
| 389 | }
|
---|
| 390 |
|
---|
| 391 | foreach (ISelector selector in Problem.Operators.OfType<ISelector>().OrderBy(x => x.Name))
|
---|
| 392 | SelectorParameter.ValidValues.Add(selector);
|
---|
| 393 |
|
---|
| 394 | if (oldSelector != null) {
|
---|
| 395 | ISelector selector = SelectorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldSelector.GetType());
|
---|
| 396 | if (selector != null) SelectorParameter.Value = selector;
|
---|
| 397 | else oldSelector = null;
|
---|
| 398 | }
|
---|
| 399 | if (oldSelector == null && defaultSelector != null)
|
---|
| 400 | SelectorParameter.Value = defaultSelector;
|
---|
| 401 | }
|
---|
| 402 |
|
---|
[9204] | 403 | private void UpdateCrossovers() {
|
---|
| 404 | ICrossover oldCrossover = CrossoverParameter.Value;
|
---|
| 405 | CrossoverParameter.ValidValues.Clear();
|
---|
| 406 | ICrossover defaultCrossover = Problem.Operators.OfType<ICrossover>().FirstOrDefault();
|
---|
| 407 |
|
---|
| 408 | foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
|
---|
| 409 | CrossoverParameter.ValidValues.Add(crossover);
|
---|
| 410 |
|
---|
| 411 | if (oldCrossover != null) {
|
---|
| 412 | ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
|
---|
| 413 | if (crossover != null) CrossoverParameter.Value = crossover;
|
---|
| 414 | else oldCrossover = null;
|
---|
| 415 | }
|
---|
| 416 | if (oldCrossover == null && defaultCrossover != null)
|
---|
| 417 | CrossoverParameter.Value = defaultCrossover;
|
---|
| 418 | }
|
---|
| 419 | private void UpdateMutators() {
|
---|
| 420 | IManipulator oldMutator = MutatorParameter.Value;
|
---|
| 421 | MutatorParameter.ValidValues.Clear();
|
---|
| 422 | IManipulator defaultMutator = Problem.Operators.OfType<IManipulator>().FirstOrDefault();
|
---|
| 423 |
|
---|
| 424 | foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
|
---|
| 425 | MutatorParameter.ValidValues.Add(mutator);
|
---|
| 426 | if (oldMutator != null) {
|
---|
| 427 | IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
|
---|
| 428 | if (mutator != null) MutatorParameter.Value = mutator;
|
---|
| 429 | else oldMutator = null;
|
---|
| 430 | }
|
---|
| 431 | if (oldMutator == null && defaultMutator != null)
|
---|
| 432 | MutatorParameter.Value = defaultMutator;
|
---|
| 433 | }
|
---|
[9154] | 434 | private void UpdateAnalyzers() {
|
---|
| 435 | Analyzer.Operators.Clear();
|
---|
[9175] | 436 | FinalAnalyzer.Operators.Clear();
|
---|
[9154] | 437 | if (Problem != null) {
|
---|
| 438 | foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
|
---|
| 439 | Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
[9175] | 440 | FinalAnalyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
|
---|
[9154] | 441 | }
|
---|
| 442 | }
|
---|
| 443 | }
|
---|
| 444 |
|
---|
| 445 | private LearningClassifierSystemMainLoop FindMainLoop(IOperator start) {
|
---|
| 446 | IOperator mainLoop = start;
|
---|
| 447 | while (mainLoop != null && !(mainLoop is LearningClassifierSystemMainLoop))
|
---|
| 448 | mainLoop = ((SingleSuccessorOperator)mainLoop).Successor;
|
---|
| 449 | if (mainLoop == null) return null;
|
---|
| 450 | else return (LearningClassifierSystemMainLoop)mainLoop;
|
---|
| 451 | }
|
---|
[8941] | 452 | }
|
---|
| 453 | }
|
---|