Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HiveStatistics/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GradientBoostedTrees/LossFunctions/SquaredErrorLoss.cs @ 12843

Last change on this file since 12843 was 12700, checked in by gkronber, 9 years ago

#2261: copied GBT implementation from branch to trunk

File size: 2.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 * and the BEACON Center for the Study of Evolution in Action.
5 *
6 * This file is part of HeuristicLab.
7 *
8 * HeuristicLab is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * HeuristicLab is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
20 */
21#endregion
22
23using System;
24using System.Collections.Generic;
25using System.Linq;
26
27namespace HeuristicLab.Algorithms.DataAnalysis {
28  public class SquaredErrorLoss : ILossFunction {
29    public double GetLoss(IEnumerable<double> target, IEnumerable<double> pred) {
30      var targetEnum = target.GetEnumerator();
31      var predEnum = pred.GetEnumerator();
32
33      double s = 0;
34      while (targetEnum.MoveNext() & predEnum.MoveNext()) {
35        double res = targetEnum.Current - predEnum.Current;
36        s += res * res; // (res)^2
37      }
38      if (targetEnum.MoveNext() | predEnum.MoveNext())
39        throw new ArgumentException("target and pred have different lengths");
40
41      return s;
42    }
43
44    public IEnumerable<double> GetLossGradient(IEnumerable<double> target, IEnumerable<double> pred) {
45      var targetEnum = target.GetEnumerator();
46      var predEnum = pred.GetEnumerator();
47
48      while (targetEnum.MoveNext() & predEnum.MoveNext()) {
49        yield return 2.0 * (targetEnum.Current - predEnum.Current); // dL(y, f(x)) / df(x)  = 2 * res
50      }
51      if (targetEnum.MoveNext() | predEnum.MoveNext())
52        throw new ArgumentException("target and pred have different lengths");
53    }
54
55    // targetArr and predArr are not changed by LineSearch
56    public double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx) {
57      if (targetArr.Length != predArr.Length)
58        throw new ArgumentException("target and pred have different lengths");
59
60      // line search for squared error loss
61      // for a given partition of rows the optimal constant that should be added to the current prediction values is the average of the residuals
62      double s = 0.0;
63      int n = 0;
64      for (int i = startIdx; i <= endIdx; i++) {
65        int row = idx[i];
66        s += (targetArr[row] - predArr[row]);
67        n++;
68      }
69      return s / n;
70    }
71
72    public override string ToString() {
73      return "Squared error loss";
74    }
75  }
76}
Note: See TracBrowser for help on using the repository browser.