[12876] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using System.Text;
|
---|
| 5 | using System.Threading.Tasks;
|
---|
| 6 | using HeuristicLab.Common;
|
---|
| 7 |
|
---|
| 8 | namespace HeuristicLab.Algorithms.Bandits {
|
---|
| 9 | // for test case 1 in Extreme Bandits paper (Carpentier, NIPS 2014)
|
---|
| 10 | public class ParetoBandit : IBandit {
|
---|
| 11 | private double[] alpha;
|
---|
| 12 | private double[] pZero;
|
---|
| 13 | public int NumArms { get { return alpha.Length; } }
|
---|
| 14 | public int OptimalExpectedRewardArm { get; private set; }
|
---|
| 15 | public int OptimalMaximalRewardArm { get; private set; }
|
---|
| 16 | private readonly Random random;
|
---|
[12893] | 17 |
|
---|
| 18 | public ParetoBandit(Random random, IEnumerable<double> alpha) {
|
---|
[12876] | 19 | this.alpha = alpha.ToArray();
|
---|
[12893] | 20 | this.pZero = new double[this.alpha.Length];
|
---|
| 21 | this.random = random;
|
---|
| 22 | OptimalExpectedRewardArm = Array.IndexOf(this.alpha, alpha.Min());
|
---|
| 23 | OptimalMaximalRewardArm = OptimalExpectedRewardArm;
|
---|
| 24 | }
|
---|
| 25 | public ParetoBandit(Random random, IEnumerable<double> alpha, IEnumerable<double> pZero, int bestExpRewardArm, int bestMaxRewardArm) { // probability of a zero reward
|
---|
| 26 | this.alpha = alpha.ToArray();
|
---|
[12876] | 27 | this.pZero = pZero.ToArray();
|
---|
| 28 | this.random = random;
|
---|
[12893] | 29 | OptimalExpectedRewardArm = bestExpRewardArm;
|
---|
| 30 | OptimalMaximalRewardArm = bestMaxRewardArm;
|
---|
[12876] | 31 | }
|
---|
| 32 |
|
---|
| 33 | public double Pull(int arm) {
|
---|
| 34 | if (random.NextDouble() < pZero[arm]) return 0.0;
|
---|
| 35 | var u = random.NextDouble();
|
---|
| 36 | return Math.Pow(1.0 - u, (-1 / alpha[arm]));
|
---|
| 37 | }
|
---|
| 38 | }
|
---|
| 39 | }
|
---|