1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using System.Text;
|
---|
5 | using System.Threading.Tasks;
|
---|
6 | using HeuristicLab.Common;
|
---|
7 |
|
---|
8 | namespace HeuristicLab.Algorithms.Bandits {
|
---|
9 | // for test case 1 in Extreme Bandits paper (Carpentier, NIPS 2014)
|
---|
10 | public class ParetoBandit : IBandit {
|
---|
11 | private double[] alpha;
|
---|
12 | private double[] pZero;
|
---|
13 | public int NumArms { get { return alpha.Length; } }
|
---|
14 | public double OptimalExpectedReward { get; private set; } // reward of the best arm, for calculating regret
|
---|
15 | public int OptimalExpectedRewardArm { get; private set; }
|
---|
16 | public int OptimalMaximalRewardArm { get; private set; }
|
---|
17 | public double MaxReward { get; private set; }
|
---|
18 | public double MinReward { get; private set; }
|
---|
19 | private readonly Random random;
|
---|
20 | public ParetoBandit(Random random, IEnumerable<double> alpha) : this(random, alpha, alpha.Select(_ => 0.0)) { }
|
---|
21 | public ParetoBandit(Random random, IEnumerable<double> alpha, IEnumerable<double> pZero) { // probability of a zero reward
|
---|
22 | this.alpha = alpha.ToArray();
|
---|
23 | this.pZero = pZero.ToArray();
|
---|
24 | this.random = random;
|
---|
25 |
|
---|
26 | // find optimal arms using empirical estimates
|
---|
27 | var bestExpReward = double.NegativeInfinity;
|
---|
28 | var bestMaxReward = double.NegativeInfinity;
|
---|
29 | for (int k = 0; k < NumArms; k++) {
|
---|
30 | double expReward = 0.0;
|
---|
31 | double maxReward = double.NegativeInfinity;
|
---|
32 | for (int i = 0; i < 100000; i++) {
|
---|
33 | var r = Pull(k);
|
---|
34 | expReward += r;
|
---|
35 | maxReward = Math.Max(maxReward, r);
|
---|
36 | }
|
---|
37 | expReward /= 100000;
|
---|
38 |
|
---|
39 | if (expReward > bestExpReward) {
|
---|
40 | bestExpReward = expReward;
|
---|
41 | OptimalExpectedRewardArm = k;
|
---|
42 | OptimalExpectedReward = expReward;
|
---|
43 | }
|
---|
44 | if (maxReward > bestMaxReward) {
|
---|
45 | bestMaxReward = maxReward;
|
---|
46 | OptimalMaximalRewardArm = k;
|
---|
47 | }
|
---|
48 | }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public double Pull(int arm) {
|
---|
52 | if (random.NextDouble() < pZero[arm]) return 0.0;
|
---|
53 | var u = random.NextDouble();
|
---|
54 | return Math.Pow(1.0 - u, (-1 / alpha[arm]));
|
---|
55 | }
|
---|
56 | }
|
---|
57 | }
|
---|