[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 6 | // |
---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 10 | |
---|
| 11 | #ifndef EIGEN_PARTIALLU_H |
---|
| 12 | #define EIGEN_PARTIALLU_H |
---|
| 13 | |
---|
| 14 | namespace Eigen { |
---|
| 15 | |
---|
| 16 | /** \ingroup LU_Module |
---|
| 17 | * |
---|
| 18 | * \class PartialPivLU |
---|
| 19 | * |
---|
| 20 | * \brief LU decomposition of a matrix with partial pivoting, and related features |
---|
| 21 | * |
---|
| 22 | * \param MatrixType the type of the matrix of which we are computing the LU decomposition |
---|
| 23 | * |
---|
| 24 | * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A |
---|
| 25 | * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P |
---|
| 26 | * is a permutation matrix. |
---|
| 27 | * |
---|
| 28 | * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible |
---|
| 29 | * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class |
---|
| 30 | * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the |
---|
| 31 | * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. |
---|
| 32 | * |
---|
| 33 | * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided |
---|
| 34 | * by class FullPivLU. |
---|
| 35 | * |
---|
| 36 | * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, |
---|
| 37 | * such as rank computation. If you need these features, use class FullPivLU. |
---|
| 38 | * |
---|
| 39 | * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses |
---|
| 40 | * in the general case. |
---|
| 41 | * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. |
---|
| 42 | * |
---|
| 43 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). |
---|
| 44 | * |
---|
| 45 | * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU |
---|
| 46 | */ |
---|
| 47 | template<typename _MatrixType> class PartialPivLU |
---|
| 48 | { |
---|
| 49 | public: |
---|
| 50 | |
---|
| 51 | typedef _MatrixType MatrixType; |
---|
| 52 | enum { |
---|
| 53 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
| 54 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
| 55 | Options = MatrixType::Options, |
---|
| 56 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
| 57 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
| 58 | }; |
---|
| 59 | typedef typename MatrixType::Scalar Scalar; |
---|
| 60 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
---|
| 61 | typedef typename internal::traits<MatrixType>::StorageKind StorageKind; |
---|
| 62 | typedef typename MatrixType::Index Index; |
---|
| 63 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
---|
| 64 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | /** |
---|
| 68 | * \brief Default Constructor. |
---|
| 69 | * |
---|
| 70 | * The default constructor is useful in cases in which the user intends to |
---|
| 71 | * perform decompositions via PartialPivLU::compute(const MatrixType&). |
---|
| 72 | */ |
---|
| 73 | PartialPivLU(); |
---|
| 74 | |
---|
| 75 | /** \brief Default Constructor with memory preallocation |
---|
| 76 | * |
---|
| 77 | * Like the default constructor but with preallocation of the internal data |
---|
| 78 | * according to the specified problem \a size. |
---|
| 79 | * \sa PartialPivLU() |
---|
| 80 | */ |
---|
| 81 | PartialPivLU(Index size); |
---|
| 82 | |
---|
| 83 | /** Constructor. |
---|
| 84 | * |
---|
| 85 | * \param matrix the matrix of which to compute the LU decomposition. |
---|
| 86 | * |
---|
| 87 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
---|
| 88 | * If you need to deal with non-full rank, use class FullPivLU instead. |
---|
| 89 | */ |
---|
| 90 | PartialPivLU(const MatrixType& matrix); |
---|
| 91 | |
---|
| 92 | PartialPivLU& compute(const MatrixType& matrix); |
---|
| 93 | |
---|
| 94 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
---|
| 95 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
---|
| 96 | * case, special care is needed, see the documentation of class FullPivLU). |
---|
| 97 | * |
---|
| 98 | * \sa matrixL(), matrixU() |
---|
| 99 | */ |
---|
| 100 | inline const MatrixType& matrixLU() const |
---|
| 101 | { |
---|
| 102 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
| 103 | return m_lu; |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | /** \returns the permutation matrix P. |
---|
| 107 | */ |
---|
| 108 | inline const PermutationType& permutationP() const |
---|
| 109 | { |
---|
| 110 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
| 111 | return m_p; |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | /** This method returns the solution x to the equation Ax=b, where A is the matrix of which |
---|
| 115 | * *this is the LU decomposition. |
---|
| 116 | * |
---|
| 117 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
---|
| 118 | * the only requirement in order for the equation to make sense is that |
---|
| 119 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
---|
| 120 | * |
---|
| 121 | * \returns the solution. |
---|
| 122 | * |
---|
| 123 | * Example: \include PartialPivLU_solve.cpp |
---|
| 124 | * Output: \verbinclude PartialPivLU_solve.out |
---|
| 125 | * |
---|
| 126 | * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution |
---|
| 127 | * theoretically exists and is unique regardless of b. |
---|
| 128 | * |
---|
| 129 | * \sa TriangularView::solve(), inverse(), computeInverse() |
---|
| 130 | */ |
---|
| 131 | template<typename Rhs> |
---|
| 132 | inline const internal::solve_retval<PartialPivLU, Rhs> |
---|
| 133 | solve(const MatrixBase<Rhs>& b) const |
---|
| 134 | { |
---|
| 135 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
| 136 | return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived()); |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
---|
| 140 | * |
---|
| 141 | * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
---|
| 142 | * invertibility, use class FullPivLU instead. |
---|
| 143 | * |
---|
| 144 | * \sa MatrixBase::inverse(), LU::inverse() |
---|
| 145 | */ |
---|
| 146 | inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const |
---|
| 147 | { |
---|
| 148 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
| 149 | return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> |
---|
| 150 | (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | /** \returns the determinant of the matrix of which |
---|
| 154 | * *this is the LU decomposition. It has only linear complexity |
---|
| 155 | * (that is, O(n) where n is the dimension of the square matrix) |
---|
| 156 | * as the LU decomposition has already been computed. |
---|
| 157 | * |
---|
| 158 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
---|
| 159 | * optimized paths. |
---|
| 160 | * |
---|
| 161 | * \warning a determinant can be very big or small, so for matrices |
---|
| 162 | * of large enough dimension, there is a risk of overflow/underflow. |
---|
| 163 | * |
---|
| 164 | * \sa MatrixBase::determinant() |
---|
| 165 | */ |
---|
| 166 | typename internal::traits<MatrixType>::Scalar determinant() const; |
---|
| 167 | |
---|
| 168 | MatrixType reconstructedMatrix() const; |
---|
| 169 | |
---|
| 170 | inline Index rows() const { return m_lu.rows(); } |
---|
| 171 | inline Index cols() const { return m_lu.cols(); } |
---|
| 172 | |
---|
| 173 | protected: |
---|
| 174 | MatrixType m_lu; |
---|
| 175 | PermutationType m_p; |
---|
| 176 | TranspositionType m_rowsTranspositions; |
---|
| 177 | Index m_det_p; |
---|
| 178 | bool m_isInitialized; |
---|
| 179 | }; |
---|
| 180 | |
---|
| 181 | template<typename MatrixType> |
---|
| 182 | PartialPivLU<MatrixType>::PartialPivLU() |
---|
| 183 | : m_lu(), |
---|
| 184 | m_p(), |
---|
| 185 | m_rowsTranspositions(), |
---|
| 186 | m_det_p(0), |
---|
| 187 | m_isInitialized(false) |
---|
| 188 | { |
---|
| 189 | } |
---|
| 190 | |
---|
| 191 | template<typename MatrixType> |
---|
| 192 | PartialPivLU<MatrixType>::PartialPivLU(Index size) |
---|
| 193 | : m_lu(size, size), |
---|
| 194 | m_p(size), |
---|
| 195 | m_rowsTranspositions(size), |
---|
| 196 | m_det_p(0), |
---|
| 197 | m_isInitialized(false) |
---|
| 198 | { |
---|
| 199 | } |
---|
| 200 | |
---|
| 201 | template<typename MatrixType> |
---|
| 202 | PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix) |
---|
| 203 | : m_lu(matrix.rows(), matrix.rows()), |
---|
| 204 | m_p(matrix.rows()), |
---|
| 205 | m_rowsTranspositions(matrix.rows()), |
---|
| 206 | m_det_p(0), |
---|
| 207 | m_isInitialized(false) |
---|
| 208 | { |
---|
| 209 | compute(matrix); |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | namespace internal { |
---|
| 213 | |
---|
| 214 | /** \internal This is the blocked version of fullpivlu_unblocked() */ |
---|
| 215 | template<typename Scalar, int StorageOrder, typename PivIndex> |
---|
| 216 | struct partial_lu_impl |
---|
| 217 | { |
---|
| 218 | // FIXME add a stride to Map, so that the following mapping becomes easier, |
---|
| 219 | // another option would be to create an expression being able to automatically |
---|
| 220 | // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly |
---|
| 221 | // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, |
---|
| 222 | // and Block. |
---|
| 223 | typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; |
---|
| 224 | typedef Block<MapLU, Dynamic, Dynamic> MatrixType; |
---|
| 225 | typedef Block<MatrixType,Dynamic,Dynamic> BlockType; |
---|
| 226 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 227 | typedef typename MatrixType::Index Index; |
---|
| 228 | |
---|
| 229 | /** \internal performs the LU decomposition in-place of the matrix \a lu |
---|
| 230 | * using an unblocked algorithm. |
---|
| 231 | * |
---|
| 232 | * In addition, this function returns the row transpositions in the |
---|
| 233 | * vector \a row_transpositions which must have a size equal to the number |
---|
| 234 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
---|
| 235 | * which returns the actual number of transpositions. |
---|
| 236 | * |
---|
| 237 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
---|
| 238 | */ |
---|
| 239 | static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) |
---|
| 240 | { |
---|
| 241 | const Index rows = lu.rows(); |
---|
| 242 | const Index cols = lu.cols(); |
---|
| 243 | const Index size = (std::min)(rows,cols); |
---|
| 244 | nb_transpositions = 0; |
---|
| 245 | int first_zero_pivot = -1; |
---|
| 246 | for(Index k = 0; k < size; ++k) |
---|
| 247 | { |
---|
| 248 | Index rrows = rows-k-1; |
---|
| 249 | Index rcols = cols-k-1; |
---|
| 250 | |
---|
| 251 | Index row_of_biggest_in_col; |
---|
| 252 | RealScalar biggest_in_corner |
---|
| 253 | = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col); |
---|
| 254 | row_of_biggest_in_col += k; |
---|
| 255 | |
---|
| 256 | row_transpositions[k] = row_of_biggest_in_col; |
---|
| 257 | |
---|
| 258 | if(biggest_in_corner != RealScalar(0)) |
---|
| 259 | { |
---|
| 260 | if(k != row_of_biggest_in_col) |
---|
| 261 | { |
---|
| 262 | lu.row(k).swap(lu.row(row_of_biggest_in_col)); |
---|
| 263 | ++nb_transpositions; |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) |
---|
| 267 | // overflow but not the actual quotient? |
---|
| 268 | lu.col(k).tail(rrows) /= lu.coeff(k,k); |
---|
| 269 | } |
---|
| 270 | else if(first_zero_pivot==-1) |
---|
| 271 | { |
---|
| 272 | // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, |
---|
| 273 | // and continue the factorization such we still have A = PLU |
---|
| 274 | first_zero_pivot = k; |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | if(k<rows-1) |
---|
| 278 | lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols); |
---|
| 279 | } |
---|
| 280 | return first_zero_pivot; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | /** \internal performs the LU decomposition in-place of the matrix represented |
---|
| 284 | * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a |
---|
| 285 | * recursive, blocked algorithm. |
---|
| 286 | * |
---|
| 287 | * In addition, this function returns the row transpositions in the |
---|
| 288 | * vector \a row_transpositions which must have a size equal to the number |
---|
| 289 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
---|
| 290 | * which returns the actual number of transpositions. |
---|
| 291 | * |
---|
| 292 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
---|
| 293 | * |
---|
| 294 | * \note This very low level interface using pointers, etc. is to: |
---|
| 295 | * 1 - reduce the number of instanciations to the strict minimum |
---|
| 296 | * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > |
---|
| 297 | */ |
---|
| 298 | static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) |
---|
| 299 | { |
---|
| 300 | MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); |
---|
| 301 | MatrixType lu(lu1,0,0,rows,cols); |
---|
| 302 | |
---|
| 303 | const Index size = (std::min)(rows,cols); |
---|
| 304 | |
---|
| 305 | // if the matrix is too small, no blocking: |
---|
| 306 | if(size<=16) |
---|
| 307 | { |
---|
| 308 | return unblocked_lu(lu, row_transpositions, nb_transpositions); |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | // automatically adjust the number of subdivisions to the size |
---|
| 312 | // of the matrix so that there is enough sub blocks: |
---|
| 313 | Index blockSize; |
---|
| 314 | { |
---|
| 315 | blockSize = size/8; |
---|
| 316 | blockSize = (blockSize/16)*16; |
---|
| 317 | blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | nb_transpositions = 0; |
---|
| 321 | int first_zero_pivot = -1; |
---|
| 322 | for(Index k = 0; k < size; k+=blockSize) |
---|
| 323 | { |
---|
| 324 | Index bs = (std::min)(size-k,blockSize); // actual size of the block |
---|
| 325 | Index trows = rows - k - bs; // trailing rows |
---|
| 326 | Index tsize = size - k - bs; // trailing size |
---|
| 327 | |
---|
| 328 | // partition the matrix: |
---|
| 329 | // A00 | A01 | A02 |
---|
| 330 | // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 |
---|
| 331 | // A20 | A21 | A22 |
---|
| 332 | BlockType A_0(lu,0,0,rows,k); |
---|
| 333 | BlockType A_2(lu,0,k+bs,rows,tsize); |
---|
| 334 | BlockType A11(lu,k,k,bs,bs); |
---|
| 335 | BlockType A12(lu,k,k+bs,bs,tsize); |
---|
| 336 | BlockType A21(lu,k+bs,k,trows,bs); |
---|
| 337 | BlockType A22(lu,k+bs,k+bs,trows,tsize); |
---|
| 338 | |
---|
| 339 | PivIndex nb_transpositions_in_panel; |
---|
| 340 | // recursively call the blocked LU algorithm on [A11^T A21^T]^T |
---|
| 341 | // with a very small blocking size: |
---|
| 342 | Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, |
---|
| 343 | row_transpositions+k, nb_transpositions_in_panel, 16); |
---|
| 344 | if(ret>=0 && first_zero_pivot==-1) |
---|
| 345 | first_zero_pivot = k+ret; |
---|
| 346 | |
---|
| 347 | nb_transpositions += nb_transpositions_in_panel; |
---|
| 348 | // update permutations and apply them to A_0 |
---|
| 349 | for(Index i=k; i<k+bs; ++i) |
---|
| 350 | { |
---|
| 351 | Index piv = (row_transpositions[i] += k); |
---|
| 352 | A_0.row(i).swap(A_0.row(piv)); |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | if(trows) |
---|
| 356 | { |
---|
| 357 | // apply permutations to A_2 |
---|
| 358 | for(Index i=k;i<k+bs; ++i) |
---|
| 359 | A_2.row(i).swap(A_2.row(row_transpositions[i])); |
---|
| 360 | |
---|
| 361 | // A12 = A11^-1 A12 |
---|
| 362 | A11.template triangularView<UnitLower>().solveInPlace(A12); |
---|
| 363 | |
---|
| 364 | A22.noalias() -= A21 * A12; |
---|
| 365 | } |
---|
| 366 | } |
---|
| 367 | return first_zero_pivot; |
---|
| 368 | } |
---|
| 369 | }; |
---|
| 370 | |
---|
| 371 | /** \internal performs the LU decomposition with partial pivoting in-place. |
---|
| 372 | */ |
---|
| 373 | template<typename MatrixType, typename TranspositionType> |
---|
| 374 | void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions) |
---|
| 375 | { |
---|
| 376 | eigen_assert(lu.cols() == row_transpositions.size()); |
---|
| 377 | eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); |
---|
| 378 | |
---|
| 379 | partial_lu_impl |
---|
| 380 | <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index> |
---|
| 381 | ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); |
---|
| 382 | } |
---|
| 383 | |
---|
| 384 | } // end namespace internal |
---|
| 385 | |
---|
| 386 | template<typename MatrixType> |
---|
| 387 | PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix) |
---|
| 388 | { |
---|
| 389 | m_lu = matrix; |
---|
| 390 | |
---|
| 391 | eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); |
---|
| 392 | const Index size = matrix.rows(); |
---|
| 393 | |
---|
| 394 | m_rowsTranspositions.resize(size); |
---|
| 395 | |
---|
| 396 | typename TranspositionType::Index nb_transpositions; |
---|
| 397 | internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); |
---|
| 398 | m_det_p = (nb_transpositions%2) ? -1 : 1; |
---|
| 399 | |
---|
| 400 | m_p = m_rowsTranspositions; |
---|
| 401 | |
---|
| 402 | m_isInitialized = true; |
---|
| 403 | return *this; |
---|
| 404 | } |
---|
| 405 | |
---|
| 406 | template<typename MatrixType> |
---|
| 407 | typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const |
---|
| 408 | { |
---|
| 409 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
| 410 | return Scalar(m_det_p) * m_lu.diagonal().prod(); |
---|
| 411 | } |
---|
| 412 | |
---|
| 413 | /** \returns the matrix represented by the decomposition, |
---|
| 414 | * i.e., it returns the product: P^{-1} L U. |
---|
| 415 | * This function is provided for debug purpose. */ |
---|
| 416 | template<typename MatrixType> |
---|
| 417 | MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const |
---|
| 418 | { |
---|
| 419 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
| 420 | // LU |
---|
| 421 | MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() |
---|
| 422 | * m_lu.template triangularView<Upper>(); |
---|
| 423 | |
---|
| 424 | // P^{-1}(LU) |
---|
| 425 | res = m_p.inverse() * res; |
---|
| 426 | |
---|
| 427 | return res; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | /***** Implementation of solve() *****************************************************/ |
---|
| 431 | |
---|
| 432 | namespace internal { |
---|
| 433 | |
---|
| 434 | template<typename _MatrixType, typename Rhs> |
---|
| 435 | struct solve_retval<PartialPivLU<_MatrixType>, Rhs> |
---|
| 436 | : solve_retval_base<PartialPivLU<_MatrixType>, Rhs> |
---|
| 437 | { |
---|
| 438 | EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs) |
---|
| 439 | |
---|
| 440 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 441 | { |
---|
| 442 | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
---|
| 443 | * So we proceed as follows: |
---|
| 444 | * Step 1: compute c = Pb. |
---|
| 445 | * Step 2: replace c by the solution x to Lx = c. |
---|
| 446 | * Step 3: replace c by the solution x to Ux = c. |
---|
| 447 | */ |
---|
| 448 | |
---|
| 449 | eigen_assert(rhs().rows() == dec().matrixLU().rows()); |
---|
| 450 | |
---|
| 451 | // Step 1 |
---|
| 452 | dst = dec().permutationP() * rhs(); |
---|
| 453 | |
---|
| 454 | // Step 2 |
---|
| 455 | dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst); |
---|
| 456 | |
---|
| 457 | // Step 3 |
---|
| 458 | dec().matrixLU().template triangularView<Upper>().solveInPlace(dst); |
---|
| 459 | } |
---|
| 460 | }; |
---|
| 461 | |
---|
| 462 | } // end namespace internal |
---|
| 463 | |
---|
| 464 | /******** MatrixBase methods *******/ |
---|
| 465 | |
---|
| 466 | /** \lu_module |
---|
| 467 | * |
---|
| 468 | * \return the partial-pivoting LU decomposition of \c *this. |
---|
| 469 | * |
---|
| 470 | * \sa class PartialPivLU |
---|
| 471 | */ |
---|
| 472 | template<typename Derived> |
---|
| 473 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
---|
| 474 | MatrixBase<Derived>::partialPivLu() const |
---|
| 475 | { |
---|
| 476 | return PartialPivLU<PlainObject>(eval()); |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS |
---|
| 480 | /** \lu_module |
---|
| 481 | * |
---|
| 482 | * Synonym of partialPivLu(). |
---|
| 483 | * |
---|
| 484 | * \return the partial-pivoting LU decomposition of \c *this. |
---|
| 485 | * |
---|
| 486 | * \sa class PartialPivLU |
---|
| 487 | */ |
---|
| 488 | template<typename Derived> |
---|
| 489 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
---|
| 490 | MatrixBase<Derived>::lu() const |
---|
| 491 | { |
---|
| 492 | return PartialPivLU<PlainObject>(eval()); |
---|
| 493 | } |
---|
| 494 | #endif |
---|
| 495 | |
---|
| 496 | } // end namespace Eigen |
---|
| 497 | |
---|
| 498 | #endif // EIGEN_PARTIALLU_H |
---|