1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
---|
5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
6 | // |
---|
7 | // This Source Code Form is subject to the terms of the Mozilla |
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
10 | |
---|
11 | #ifndef EIGEN_PARTIALLU_H |
---|
12 | #define EIGEN_PARTIALLU_H |
---|
13 | |
---|
14 | namespace Eigen { |
---|
15 | |
---|
16 | /** \ingroup LU_Module |
---|
17 | * |
---|
18 | * \class PartialPivLU |
---|
19 | * |
---|
20 | * \brief LU decomposition of a matrix with partial pivoting, and related features |
---|
21 | * |
---|
22 | * \param MatrixType the type of the matrix of which we are computing the LU decomposition |
---|
23 | * |
---|
24 | * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A |
---|
25 | * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P |
---|
26 | * is a permutation matrix. |
---|
27 | * |
---|
28 | * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible |
---|
29 | * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class |
---|
30 | * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the |
---|
31 | * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. |
---|
32 | * |
---|
33 | * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided |
---|
34 | * by class FullPivLU. |
---|
35 | * |
---|
36 | * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, |
---|
37 | * such as rank computation. If you need these features, use class FullPivLU. |
---|
38 | * |
---|
39 | * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses |
---|
40 | * in the general case. |
---|
41 | * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. |
---|
42 | * |
---|
43 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). |
---|
44 | * |
---|
45 | * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU |
---|
46 | */ |
---|
47 | template<typename _MatrixType> class PartialPivLU |
---|
48 | { |
---|
49 | public: |
---|
50 | |
---|
51 | typedef _MatrixType MatrixType; |
---|
52 | enum { |
---|
53 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
54 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
55 | Options = MatrixType::Options, |
---|
56 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
---|
57 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
58 | }; |
---|
59 | typedef typename MatrixType::Scalar Scalar; |
---|
60 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
---|
61 | typedef typename internal::traits<MatrixType>::StorageKind StorageKind; |
---|
62 | typedef typename MatrixType::Index Index; |
---|
63 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
---|
64 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
---|
65 | |
---|
66 | |
---|
67 | /** |
---|
68 | * \brief Default Constructor. |
---|
69 | * |
---|
70 | * The default constructor is useful in cases in which the user intends to |
---|
71 | * perform decompositions via PartialPivLU::compute(const MatrixType&). |
---|
72 | */ |
---|
73 | PartialPivLU(); |
---|
74 | |
---|
75 | /** \brief Default Constructor with memory preallocation |
---|
76 | * |
---|
77 | * Like the default constructor but with preallocation of the internal data |
---|
78 | * according to the specified problem \a size. |
---|
79 | * \sa PartialPivLU() |
---|
80 | */ |
---|
81 | PartialPivLU(Index size); |
---|
82 | |
---|
83 | /** Constructor. |
---|
84 | * |
---|
85 | * \param matrix the matrix of which to compute the LU decomposition. |
---|
86 | * |
---|
87 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
---|
88 | * If you need to deal with non-full rank, use class FullPivLU instead. |
---|
89 | */ |
---|
90 | PartialPivLU(const MatrixType& matrix); |
---|
91 | |
---|
92 | PartialPivLU& compute(const MatrixType& matrix); |
---|
93 | |
---|
94 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
---|
95 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
---|
96 | * case, special care is needed, see the documentation of class FullPivLU). |
---|
97 | * |
---|
98 | * \sa matrixL(), matrixU() |
---|
99 | */ |
---|
100 | inline const MatrixType& matrixLU() const |
---|
101 | { |
---|
102 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
103 | return m_lu; |
---|
104 | } |
---|
105 | |
---|
106 | /** \returns the permutation matrix P. |
---|
107 | */ |
---|
108 | inline const PermutationType& permutationP() const |
---|
109 | { |
---|
110 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
111 | return m_p; |
---|
112 | } |
---|
113 | |
---|
114 | /** This method returns the solution x to the equation Ax=b, where A is the matrix of which |
---|
115 | * *this is the LU decomposition. |
---|
116 | * |
---|
117 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
---|
118 | * the only requirement in order for the equation to make sense is that |
---|
119 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
---|
120 | * |
---|
121 | * \returns the solution. |
---|
122 | * |
---|
123 | * Example: \include PartialPivLU_solve.cpp |
---|
124 | * Output: \verbinclude PartialPivLU_solve.out |
---|
125 | * |
---|
126 | * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution |
---|
127 | * theoretically exists and is unique regardless of b. |
---|
128 | * |
---|
129 | * \sa TriangularView::solve(), inverse(), computeInverse() |
---|
130 | */ |
---|
131 | template<typename Rhs> |
---|
132 | inline const internal::solve_retval<PartialPivLU, Rhs> |
---|
133 | solve(const MatrixBase<Rhs>& b) const |
---|
134 | { |
---|
135 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
136 | return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived()); |
---|
137 | } |
---|
138 | |
---|
139 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
---|
140 | * |
---|
141 | * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
---|
142 | * invertibility, use class FullPivLU instead. |
---|
143 | * |
---|
144 | * \sa MatrixBase::inverse(), LU::inverse() |
---|
145 | */ |
---|
146 | inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const |
---|
147 | { |
---|
148 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
149 | return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> |
---|
150 | (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); |
---|
151 | } |
---|
152 | |
---|
153 | /** \returns the determinant of the matrix of which |
---|
154 | * *this is the LU decomposition. It has only linear complexity |
---|
155 | * (that is, O(n) where n is the dimension of the square matrix) |
---|
156 | * as the LU decomposition has already been computed. |
---|
157 | * |
---|
158 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
---|
159 | * optimized paths. |
---|
160 | * |
---|
161 | * \warning a determinant can be very big or small, so for matrices |
---|
162 | * of large enough dimension, there is a risk of overflow/underflow. |
---|
163 | * |
---|
164 | * \sa MatrixBase::determinant() |
---|
165 | */ |
---|
166 | typename internal::traits<MatrixType>::Scalar determinant() const; |
---|
167 | |
---|
168 | MatrixType reconstructedMatrix() const; |
---|
169 | |
---|
170 | inline Index rows() const { return m_lu.rows(); } |
---|
171 | inline Index cols() const { return m_lu.cols(); } |
---|
172 | |
---|
173 | protected: |
---|
174 | MatrixType m_lu; |
---|
175 | PermutationType m_p; |
---|
176 | TranspositionType m_rowsTranspositions; |
---|
177 | Index m_det_p; |
---|
178 | bool m_isInitialized; |
---|
179 | }; |
---|
180 | |
---|
181 | template<typename MatrixType> |
---|
182 | PartialPivLU<MatrixType>::PartialPivLU() |
---|
183 | : m_lu(), |
---|
184 | m_p(), |
---|
185 | m_rowsTranspositions(), |
---|
186 | m_det_p(0), |
---|
187 | m_isInitialized(false) |
---|
188 | { |
---|
189 | } |
---|
190 | |
---|
191 | template<typename MatrixType> |
---|
192 | PartialPivLU<MatrixType>::PartialPivLU(Index size) |
---|
193 | : m_lu(size, size), |
---|
194 | m_p(size), |
---|
195 | m_rowsTranspositions(size), |
---|
196 | m_det_p(0), |
---|
197 | m_isInitialized(false) |
---|
198 | { |
---|
199 | } |
---|
200 | |
---|
201 | template<typename MatrixType> |
---|
202 | PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix) |
---|
203 | : m_lu(matrix.rows(), matrix.rows()), |
---|
204 | m_p(matrix.rows()), |
---|
205 | m_rowsTranspositions(matrix.rows()), |
---|
206 | m_det_p(0), |
---|
207 | m_isInitialized(false) |
---|
208 | { |
---|
209 | compute(matrix); |
---|
210 | } |
---|
211 | |
---|
212 | namespace internal { |
---|
213 | |
---|
214 | /** \internal This is the blocked version of fullpivlu_unblocked() */ |
---|
215 | template<typename Scalar, int StorageOrder, typename PivIndex> |
---|
216 | struct partial_lu_impl |
---|
217 | { |
---|
218 | // FIXME add a stride to Map, so that the following mapping becomes easier, |
---|
219 | // another option would be to create an expression being able to automatically |
---|
220 | // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly |
---|
221 | // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, |
---|
222 | // and Block. |
---|
223 | typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; |
---|
224 | typedef Block<MapLU, Dynamic, Dynamic> MatrixType; |
---|
225 | typedef Block<MatrixType,Dynamic,Dynamic> BlockType; |
---|
226 | typedef typename MatrixType::RealScalar RealScalar; |
---|
227 | typedef typename MatrixType::Index Index; |
---|
228 | |
---|
229 | /** \internal performs the LU decomposition in-place of the matrix \a lu |
---|
230 | * using an unblocked algorithm. |
---|
231 | * |
---|
232 | * In addition, this function returns the row transpositions in the |
---|
233 | * vector \a row_transpositions which must have a size equal to the number |
---|
234 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
---|
235 | * which returns the actual number of transpositions. |
---|
236 | * |
---|
237 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
---|
238 | */ |
---|
239 | static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) |
---|
240 | { |
---|
241 | const Index rows = lu.rows(); |
---|
242 | const Index cols = lu.cols(); |
---|
243 | const Index size = (std::min)(rows,cols); |
---|
244 | nb_transpositions = 0; |
---|
245 | int first_zero_pivot = -1; |
---|
246 | for(Index k = 0; k < size; ++k) |
---|
247 | { |
---|
248 | Index rrows = rows-k-1; |
---|
249 | Index rcols = cols-k-1; |
---|
250 | |
---|
251 | Index row_of_biggest_in_col; |
---|
252 | RealScalar biggest_in_corner |
---|
253 | = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col); |
---|
254 | row_of_biggest_in_col += k; |
---|
255 | |
---|
256 | row_transpositions[k] = row_of_biggest_in_col; |
---|
257 | |
---|
258 | if(biggest_in_corner != RealScalar(0)) |
---|
259 | { |
---|
260 | if(k != row_of_biggest_in_col) |
---|
261 | { |
---|
262 | lu.row(k).swap(lu.row(row_of_biggest_in_col)); |
---|
263 | ++nb_transpositions; |
---|
264 | } |
---|
265 | |
---|
266 | // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) |
---|
267 | // overflow but not the actual quotient? |
---|
268 | lu.col(k).tail(rrows) /= lu.coeff(k,k); |
---|
269 | } |
---|
270 | else if(first_zero_pivot==-1) |
---|
271 | { |
---|
272 | // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, |
---|
273 | // and continue the factorization such we still have A = PLU |
---|
274 | first_zero_pivot = k; |
---|
275 | } |
---|
276 | |
---|
277 | if(k<rows-1) |
---|
278 | lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols); |
---|
279 | } |
---|
280 | return first_zero_pivot; |
---|
281 | } |
---|
282 | |
---|
283 | /** \internal performs the LU decomposition in-place of the matrix represented |
---|
284 | * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a |
---|
285 | * recursive, blocked algorithm. |
---|
286 | * |
---|
287 | * In addition, this function returns the row transpositions in the |
---|
288 | * vector \a row_transpositions which must have a size equal to the number |
---|
289 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
---|
290 | * which returns the actual number of transpositions. |
---|
291 | * |
---|
292 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
---|
293 | * |
---|
294 | * \note This very low level interface using pointers, etc. is to: |
---|
295 | * 1 - reduce the number of instanciations to the strict minimum |
---|
296 | * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > |
---|
297 | */ |
---|
298 | static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) |
---|
299 | { |
---|
300 | MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); |
---|
301 | MatrixType lu(lu1,0,0,rows,cols); |
---|
302 | |
---|
303 | const Index size = (std::min)(rows,cols); |
---|
304 | |
---|
305 | // if the matrix is too small, no blocking: |
---|
306 | if(size<=16) |
---|
307 | { |
---|
308 | return unblocked_lu(lu, row_transpositions, nb_transpositions); |
---|
309 | } |
---|
310 | |
---|
311 | // automatically adjust the number of subdivisions to the size |
---|
312 | // of the matrix so that there is enough sub blocks: |
---|
313 | Index blockSize; |
---|
314 | { |
---|
315 | blockSize = size/8; |
---|
316 | blockSize = (blockSize/16)*16; |
---|
317 | blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); |
---|
318 | } |
---|
319 | |
---|
320 | nb_transpositions = 0; |
---|
321 | int first_zero_pivot = -1; |
---|
322 | for(Index k = 0; k < size; k+=blockSize) |
---|
323 | { |
---|
324 | Index bs = (std::min)(size-k,blockSize); // actual size of the block |
---|
325 | Index trows = rows - k - bs; // trailing rows |
---|
326 | Index tsize = size - k - bs; // trailing size |
---|
327 | |
---|
328 | // partition the matrix: |
---|
329 | // A00 | A01 | A02 |
---|
330 | // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 |
---|
331 | // A20 | A21 | A22 |
---|
332 | BlockType A_0(lu,0,0,rows,k); |
---|
333 | BlockType A_2(lu,0,k+bs,rows,tsize); |
---|
334 | BlockType A11(lu,k,k,bs,bs); |
---|
335 | BlockType A12(lu,k,k+bs,bs,tsize); |
---|
336 | BlockType A21(lu,k+bs,k,trows,bs); |
---|
337 | BlockType A22(lu,k+bs,k+bs,trows,tsize); |
---|
338 | |
---|
339 | PivIndex nb_transpositions_in_panel; |
---|
340 | // recursively call the blocked LU algorithm on [A11^T A21^T]^T |
---|
341 | // with a very small blocking size: |
---|
342 | Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, |
---|
343 | row_transpositions+k, nb_transpositions_in_panel, 16); |
---|
344 | if(ret>=0 && first_zero_pivot==-1) |
---|
345 | first_zero_pivot = k+ret; |
---|
346 | |
---|
347 | nb_transpositions += nb_transpositions_in_panel; |
---|
348 | // update permutations and apply them to A_0 |
---|
349 | for(Index i=k; i<k+bs; ++i) |
---|
350 | { |
---|
351 | Index piv = (row_transpositions[i] += k); |
---|
352 | A_0.row(i).swap(A_0.row(piv)); |
---|
353 | } |
---|
354 | |
---|
355 | if(trows) |
---|
356 | { |
---|
357 | // apply permutations to A_2 |
---|
358 | for(Index i=k;i<k+bs; ++i) |
---|
359 | A_2.row(i).swap(A_2.row(row_transpositions[i])); |
---|
360 | |
---|
361 | // A12 = A11^-1 A12 |
---|
362 | A11.template triangularView<UnitLower>().solveInPlace(A12); |
---|
363 | |
---|
364 | A22.noalias() -= A21 * A12; |
---|
365 | } |
---|
366 | } |
---|
367 | return first_zero_pivot; |
---|
368 | } |
---|
369 | }; |
---|
370 | |
---|
371 | /** \internal performs the LU decomposition with partial pivoting in-place. |
---|
372 | */ |
---|
373 | template<typename MatrixType, typename TranspositionType> |
---|
374 | void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions) |
---|
375 | { |
---|
376 | eigen_assert(lu.cols() == row_transpositions.size()); |
---|
377 | eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); |
---|
378 | |
---|
379 | partial_lu_impl |
---|
380 | <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index> |
---|
381 | ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); |
---|
382 | } |
---|
383 | |
---|
384 | } // end namespace internal |
---|
385 | |
---|
386 | template<typename MatrixType> |
---|
387 | PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix) |
---|
388 | { |
---|
389 | m_lu = matrix; |
---|
390 | |
---|
391 | eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); |
---|
392 | const Index size = matrix.rows(); |
---|
393 | |
---|
394 | m_rowsTranspositions.resize(size); |
---|
395 | |
---|
396 | typename TranspositionType::Index nb_transpositions; |
---|
397 | internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); |
---|
398 | m_det_p = (nb_transpositions%2) ? -1 : 1; |
---|
399 | |
---|
400 | m_p = m_rowsTranspositions; |
---|
401 | |
---|
402 | m_isInitialized = true; |
---|
403 | return *this; |
---|
404 | } |
---|
405 | |
---|
406 | template<typename MatrixType> |
---|
407 | typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const |
---|
408 | { |
---|
409 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
---|
410 | return Scalar(m_det_p) * m_lu.diagonal().prod(); |
---|
411 | } |
---|
412 | |
---|
413 | /** \returns the matrix represented by the decomposition, |
---|
414 | * i.e., it returns the product: P^{-1} L U. |
---|
415 | * This function is provided for debug purpose. */ |
---|
416 | template<typename MatrixType> |
---|
417 | MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const |
---|
418 | { |
---|
419 | eigen_assert(m_isInitialized && "LU is not initialized."); |
---|
420 | // LU |
---|
421 | MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() |
---|
422 | * m_lu.template triangularView<Upper>(); |
---|
423 | |
---|
424 | // P^{-1}(LU) |
---|
425 | res = m_p.inverse() * res; |
---|
426 | |
---|
427 | return res; |
---|
428 | } |
---|
429 | |
---|
430 | /***** Implementation of solve() *****************************************************/ |
---|
431 | |
---|
432 | namespace internal { |
---|
433 | |
---|
434 | template<typename _MatrixType, typename Rhs> |
---|
435 | struct solve_retval<PartialPivLU<_MatrixType>, Rhs> |
---|
436 | : solve_retval_base<PartialPivLU<_MatrixType>, Rhs> |
---|
437 | { |
---|
438 | EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs) |
---|
439 | |
---|
440 | template<typename Dest> void evalTo(Dest& dst) const |
---|
441 | { |
---|
442 | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
---|
443 | * So we proceed as follows: |
---|
444 | * Step 1: compute c = Pb. |
---|
445 | * Step 2: replace c by the solution x to Lx = c. |
---|
446 | * Step 3: replace c by the solution x to Ux = c. |
---|
447 | */ |
---|
448 | |
---|
449 | eigen_assert(rhs().rows() == dec().matrixLU().rows()); |
---|
450 | |
---|
451 | // Step 1 |
---|
452 | dst = dec().permutationP() * rhs(); |
---|
453 | |
---|
454 | // Step 2 |
---|
455 | dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst); |
---|
456 | |
---|
457 | // Step 3 |
---|
458 | dec().matrixLU().template triangularView<Upper>().solveInPlace(dst); |
---|
459 | } |
---|
460 | }; |
---|
461 | |
---|
462 | } // end namespace internal |
---|
463 | |
---|
464 | /******** MatrixBase methods *******/ |
---|
465 | |
---|
466 | /** \lu_module |
---|
467 | * |
---|
468 | * \return the partial-pivoting LU decomposition of \c *this. |
---|
469 | * |
---|
470 | * \sa class PartialPivLU |
---|
471 | */ |
---|
472 | template<typename Derived> |
---|
473 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
---|
474 | MatrixBase<Derived>::partialPivLu() const |
---|
475 | { |
---|
476 | return PartialPivLU<PlainObject>(eval()); |
---|
477 | } |
---|
478 | |
---|
479 | #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS |
---|
480 | /** \lu_module |
---|
481 | * |
---|
482 | * Synonym of partialPivLu(). |
---|
483 | * |
---|
484 | * \return the partial-pivoting LU decomposition of \c *this. |
---|
485 | * |
---|
486 | * \sa class PartialPivLU |
---|
487 | */ |
---|
488 | template<typename Derived> |
---|
489 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
---|
490 | MatrixBase<Derived>::lu() const |
---|
491 | { |
---|
492 | return PartialPivLU<PlainObject>(eval()); |
---|
493 | } |
---|
494 | #endif |
---|
495 | |
---|
496 | } // end namespace Eigen |
---|
497 | |
---|
498 | #endif // EIGEN_PARTIALLU_H |
---|