[9562] | 1 | // This file is part of Eigen, a lightweight C++ template library |
---|
| 2 | // for linear algebra. |
---|
| 3 | // |
---|
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
| 5 | // |
---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
| 9 | |
---|
| 10 | #ifndef EIGEN_LLT_H |
---|
| 11 | #define EIGEN_LLT_H |
---|
| 12 | |
---|
| 13 | namespace Eigen { |
---|
| 14 | |
---|
| 15 | namespace internal{ |
---|
| 16 | template<typename MatrixType, int UpLo> struct LLT_Traits; |
---|
| 17 | } |
---|
| 18 | |
---|
| 19 | /** \ingroup Cholesky_Module |
---|
| 20 | * |
---|
| 21 | * \class LLT |
---|
| 22 | * |
---|
| 23 | * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features |
---|
| 24 | * |
---|
| 25 | * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition |
---|
| 26 | * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. |
---|
| 27 | * The other triangular part won't be read. |
---|
| 28 | * |
---|
| 29 | * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite |
---|
| 30 | * matrix A such that A = LL^* = U^*U, where L is lower triangular. |
---|
| 31 | * |
---|
| 32 | * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, |
---|
| 33 | * for that purpose, we recommend the Cholesky decomposition without square root which is more stable |
---|
| 34 | * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other |
---|
| 35 | * situations like generalised eigen problems with hermitian matrices. |
---|
| 36 | * |
---|
| 37 | * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, |
---|
| 38 | * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations |
---|
| 39 | * has a solution. |
---|
| 40 | * |
---|
| 41 | * Example: \include LLT_example.cpp |
---|
| 42 | * Output: \verbinclude LLT_example.out |
---|
| 43 | * |
---|
| 44 | * \sa MatrixBase::llt(), class LDLT |
---|
| 45 | */ |
---|
| 46 | /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) |
---|
| 47 | * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, |
---|
| 48 | * the strict lower part does not have to store correct values. |
---|
| 49 | */ |
---|
| 50 | template<typename _MatrixType, int _UpLo> class LLT |
---|
| 51 | { |
---|
| 52 | public: |
---|
| 53 | typedef _MatrixType MatrixType; |
---|
| 54 | enum { |
---|
| 55 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
| 56 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
| 57 | Options = MatrixType::Options, |
---|
| 58 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
| 59 | }; |
---|
| 60 | typedef typename MatrixType::Scalar Scalar; |
---|
| 61 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
---|
| 62 | typedef typename MatrixType::Index Index; |
---|
| 63 | |
---|
| 64 | enum { |
---|
| 65 | PacketSize = internal::packet_traits<Scalar>::size, |
---|
| 66 | AlignmentMask = int(PacketSize)-1, |
---|
| 67 | UpLo = _UpLo |
---|
| 68 | }; |
---|
| 69 | |
---|
| 70 | typedef internal::LLT_Traits<MatrixType,UpLo> Traits; |
---|
| 71 | |
---|
| 72 | /** |
---|
| 73 | * \brief Default Constructor. |
---|
| 74 | * |
---|
| 75 | * The default constructor is useful in cases in which the user intends to |
---|
| 76 | * perform decompositions via LLT::compute(const MatrixType&). |
---|
| 77 | */ |
---|
| 78 | LLT() : m_matrix(), m_isInitialized(false) {} |
---|
| 79 | |
---|
| 80 | /** \brief Default Constructor with memory preallocation |
---|
| 81 | * |
---|
| 82 | * Like the default constructor but with preallocation of the internal data |
---|
| 83 | * according to the specified problem \a size. |
---|
| 84 | * \sa LLT() |
---|
| 85 | */ |
---|
| 86 | LLT(Index size) : m_matrix(size, size), |
---|
| 87 | m_isInitialized(false) {} |
---|
| 88 | |
---|
| 89 | LLT(const MatrixType& matrix) |
---|
| 90 | : m_matrix(matrix.rows(), matrix.cols()), |
---|
| 91 | m_isInitialized(false) |
---|
| 92 | { |
---|
| 93 | compute(matrix); |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | /** \returns a view of the upper triangular matrix U */ |
---|
| 97 | inline typename Traits::MatrixU matrixU() const |
---|
| 98 | { |
---|
| 99 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
| 100 | return Traits::getU(m_matrix); |
---|
| 101 | } |
---|
| 102 | |
---|
| 103 | /** \returns a view of the lower triangular matrix L */ |
---|
| 104 | inline typename Traits::MatrixL matrixL() const |
---|
| 105 | { |
---|
| 106 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
| 107 | return Traits::getL(m_matrix); |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
| 111 | * |
---|
| 112 | * Since this LLT class assumes anyway that the matrix A is invertible, the solution |
---|
| 113 | * theoretically exists and is unique regardless of b. |
---|
| 114 | * |
---|
| 115 | * Example: \include LLT_solve.cpp |
---|
| 116 | * Output: \verbinclude LLT_solve.out |
---|
| 117 | * |
---|
| 118 | * \sa solveInPlace(), MatrixBase::llt() |
---|
| 119 | */ |
---|
| 120 | template<typename Rhs> |
---|
| 121 | inline const internal::solve_retval<LLT, Rhs> |
---|
| 122 | solve(const MatrixBase<Rhs>& b) const |
---|
| 123 | { |
---|
| 124 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
| 125 | eigen_assert(m_matrix.rows()==b.rows() |
---|
| 126 | && "LLT::solve(): invalid number of rows of the right hand side matrix b"); |
---|
| 127 | return internal::solve_retval<LLT, Rhs>(*this, b.derived()); |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | #ifdef EIGEN2_SUPPORT |
---|
| 131 | template<typename OtherDerived, typename ResultType> |
---|
| 132 | bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const |
---|
| 133 | { |
---|
| 134 | *result = this->solve(b); |
---|
| 135 | return true; |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | bool isPositiveDefinite() const { return true; } |
---|
| 139 | #endif |
---|
| 140 | |
---|
| 141 | template<typename Derived> |
---|
| 142 | void solveInPlace(MatrixBase<Derived> &bAndX) const; |
---|
| 143 | |
---|
| 144 | LLT& compute(const MatrixType& matrix); |
---|
| 145 | |
---|
| 146 | /** \returns the LLT decomposition matrix |
---|
| 147 | * |
---|
| 148 | * TODO: document the storage layout |
---|
| 149 | */ |
---|
| 150 | inline const MatrixType& matrixLLT() const |
---|
| 151 | { |
---|
| 152 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
| 153 | return m_matrix; |
---|
| 154 | } |
---|
| 155 | |
---|
| 156 | MatrixType reconstructedMatrix() const; |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | /** \brief Reports whether previous computation was successful. |
---|
| 160 | * |
---|
| 161 | * \returns \c Success if computation was succesful, |
---|
| 162 | * \c NumericalIssue if the matrix.appears to be negative. |
---|
| 163 | */ |
---|
| 164 | ComputationInfo info() const |
---|
| 165 | { |
---|
| 166 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
| 167 | return m_info; |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | inline Index rows() const { return m_matrix.rows(); } |
---|
| 171 | inline Index cols() const { return m_matrix.cols(); } |
---|
| 172 | |
---|
| 173 | template<typename VectorType> |
---|
| 174 | LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); |
---|
| 175 | |
---|
| 176 | protected: |
---|
| 177 | /** \internal |
---|
| 178 | * Used to compute and store L |
---|
| 179 | * The strict upper part is not used and even not initialized. |
---|
| 180 | */ |
---|
| 181 | MatrixType m_matrix; |
---|
| 182 | bool m_isInitialized; |
---|
| 183 | ComputationInfo m_info; |
---|
| 184 | }; |
---|
| 185 | |
---|
| 186 | namespace internal { |
---|
| 187 | |
---|
| 188 | template<typename Scalar, int UpLo> struct llt_inplace; |
---|
| 189 | |
---|
| 190 | template<typename MatrixType, typename VectorType> |
---|
| 191 | static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) |
---|
| 192 | { |
---|
| 193 | typedef typename MatrixType::Scalar Scalar; |
---|
| 194 | typedef typename MatrixType::RealScalar RealScalar; |
---|
| 195 | typedef typename MatrixType::Index Index; |
---|
| 196 | typedef typename MatrixType::ColXpr ColXpr; |
---|
| 197 | typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; |
---|
| 198 | typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; |
---|
| 199 | typedef Matrix<Scalar,Dynamic,1> TempVectorType; |
---|
| 200 | typedef typename TempVectorType::SegmentReturnType TempVecSegment; |
---|
| 201 | |
---|
| 202 | int n = mat.cols(); |
---|
| 203 | eigen_assert(mat.rows()==n && vec.size()==n); |
---|
| 204 | |
---|
| 205 | TempVectorType temp; |
---|
| 206 | |
---|
| 207 | if(sigma>0) |
---|
| 208 | { |
---|
| 209 | // This version is based on Givens rotations. |
---|
| 210 | // It is faster than the other one below, but only works for updates, |
---|
| 211 | // i.e., for sigma > 0 |
---|
| 212 | temp = sqrt(sigma) * vec; |
---|
| 213 | |
---|
| 214 | for(int i=0; i<n; ++i) |
---|
| 215 | { |
---|
| 216 | JacobiRotation<Scalar> g; |
---|
| 217 | g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); |
---|
| 218 | |
---|
| 219 | int rs = n-i-1; |
---|
| 220 | if(rs>0) |
---|
| 221 | { |
---|
| 222 | ColXprSegment x(mat.col(i).tail(rs)); |
---|
| 223 | TempVecSegment y(temp.tail(rs)); |
---|
| 224 | apply_rotation_in_the_plane(x, y, g); |
---|
| 225 | } |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | else |
---|
| 229 | { |
---|
| 230 | temp = vec; |
---|
| 231 | RealScalar beta = 1; |
---|
| 232 | for(int j=0; j<n; ++j) |
---|
| 233 | { |
---|
| 234 | RealScalar Ljj = real(mat.coeff(j,j)); |
---|
| 235 | RealScalar dj = abs2(Ljj); |
---|
| 236 | Scalar wj = temp.coeff(j); |
---|
| 237 | RealScalar swj2 = sigma*abs2(wj); |
---|
| 238 | RealScalar gamma = dj*beta + swj2; |
---|
| 239 | |
---|
| 240 | RealScalar x = dj + swj2/beta; |
---|
| 241 | if (x<=RealScalar(0)) |
---|
| 242 | return j; |
---|
| 243 | RealScalar nLjj = sqrt(x); |
---|
| 244 | mat.coeffRef(j,j) = nLjj; |
---|
| 245 | beta += swj2/dj; |
---|
| 246 | |
---|
| 247 | // Update the terms of L |
---|
| 248 | Index rs = n-j-1; |
---|
| 249 | if(rs) |
---|
| 250 | { |
---|
| 251 | temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); |
---|
| 252 | if(gamma != 0) |
---|
| 253 | mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*conj(wj)/gamma)*temp.tail(rs); |
---|
| 254 | } |
---|
| 255 | } |
---|
| 256 | } |
---|
| 257 | return -1; |
---|
| 258 | } |
---|
| 259 | |
---|
| 260 | template<typename Scalar> struct llt_inplace<Scalar, Lower> |
---|
| 261 | { |
---|
| 262 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
| 263 | template<typename MatrixType> |
---|
| 264 | static typename MatrixType::Index unblocked(MatrixType& mat) |
---|
| 265 | { |
---|
| 266 | typedef typename MatrixType::Index Index; |
---|
| 267 | |
---|
| 268 | eigen_assert(mat.rows()==mat.cols()); |
---|
| 269 | const Index size = mat.rows(); |
---|
| 270 | for(Index k = 0; k < size; ++k) |
---|
| 271 | { |
---|
| 272 | Index rs = size-k-1; // remaining size |
---|
| 273 | |
---|
| 274 | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
---|
| 275 | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
---|
| 276 | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
---|
| 277 | |
---|
| 278 | RealScalar x = real(mat.coeff(k,k)); |
---|
| 279 | if (k>0) x -= A10.squaredNorm(); |
---|
| 280 | if (x<=RealScalar(0)) |
---|
| 281 | return k; |
---|
| 282 | mat.coeffRef(k,k) = x = sqrt(x); |
---|
| 283 | if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); |
---|
| 284 | if (rs>0) A21 *= RealScalar(1)/x; |
---|
| 285 | } |
---|
| 286 | return -1; |
---|
| 287 | } |
---|
| 288 | |
---|
| 289 | template<typename MatrixType> |
---|
| 290 | static typename MatrixType::Index blocked(MatrixType& m) |
---|
| 291 | { |
---|
| 292 | typedef typename MatrixType::Index Index; |
---|
| 293 | eigen_assert(m.rows()==m.cols()); |
---|
| 294 | Index size = m.rows(); |
---|
| 295 | if(size<32) |
---|
| 296 | return unblocked(m); |
---|
| 297 | |
---|
| 298 | Index blockSize = size/8; |
---|
| 299 | blockSize = (blockSize/16)*16; |
---|
| 300 | blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); |
---|
| 301 | |
---|
| 302 | for (Index k=0; k<size; k+=blockSize) |
---|
| 303 | { |
---|
| 304 | // partition the matrix: |
---|
| 305 | // A00 | - | - |
---|
| 306 | // lu = A10 | A11 | - |
---|
| 307 | // A20 | A21 | A22 |
---|
| 308 | Index bs = (std::min)(blockSize, size-k); |
---|
| 309 | Index rs = size - k - bs; |
---|
| 310 | Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); |
---|
| 311 | Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); |
---|
| 312 | Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); |
---|
| 313 | |
---|
| 314 | Index ret; |
---|
| 315 | if((ret=unblocked(A11))>=0) return k+ret; |
---|
| 316 | if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); |
---|
| 317 | if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck |
---|
| 318 | } |
---|
| 319 | return -1; |
---|
| 320 | } |
---|
| 321 | |
---|
| 322 | template<typename MatrixType, typename VectorType> |
---|
| 323 | static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
---|
| 324 | { |
---|
| 325 | return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); |
---|
| 326 | } |
---|
| 327 | }; |
---|
| 328 | |
---|
| 329 | template<typename Scalar> struct llt_inplace<Scalar, Upper> |
---|
| 330 | { |
---|
| 331 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
| 332 | |
---|
| 333 | template<typename MatrixType> |
---|
| 334 | static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat) |
---|
| 335 | { |
---|
| 336 | Transpose<MatrixType> matt(mat); |
---|
| 337 | return llt_inplace<Scalar, Lower>::unblocked(matt); |
---|
| 338 | } |
---|
| 339 | template<typename MatrixType> |
---|
| 340 | static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat) |
---|
| 341 | { |
---|
| 342 | Transpose<MatrixType> matt(mat); |
---|
| 343 | return llt_inplace<Scalar, Lower>::blocked(matt); |
---|
| 344 | } |
---|
| 345 | template<typename MatrixType, typename VectorType> |
---|
| 346 | static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
---|
| 347 | { |
---|
| 348 | Transpose<MatrixType> matt(mat); |
---|
| 349 | return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); |
---|
| 350 | } |
---|
| 351 | }; |
---|
| 352 | |
---|
| 353 | template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> |
---|
| 354 | { |
---|
| 355 | typedef const TriangularView<const MatrixType, Lower> MatrixL; |
---|
| 356 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; |
---|
| 357 | static inline MatrixL getL(const MatrixType& m) { return m; } |
---|
| 358 | static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
---|
| 359 | static bool inplace_decomposition(MatrixType& m) |
---|
| 360 | { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } |
---|
| 361 | }; |
---|
| 362 | |
---|
| 363 | template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> |
---|
| 364 | { |
---|
| 365 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; |
---|
| 366 | typedef const TriangularView<const MatrixType, Upper> MatrixU; |
---|
| 367 | static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } |
---|
| 368 | static inline MatrixU getU(const MatrixType& m) { return m; } |
---|
| 369 | static bool inplace_decomposition(MatrixType& m) |
---|
| 370 | { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } |
---|
| 371 | }; |
---|
| 372 | |
---|
| 373 | } // end namespace internal |
---|
| 374 | |
---|
| 375 | /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix |
---|
| 376 | * |
---|
| 377 | * \returns a reference to *this |
---|
| 378 | * |
---|
| 379 | * Example: \include TutorialLinAlgComputeTwice.cpp |
---|
| 380 | * Output: \verbinclude TutorialLinAlgComputeTwice.out |
---|
| 381 | */ |
---|
| 382 | template<typename MatrixType, int _UpLo> |
---|
| 383 | LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) |
---|
| 384 | { |
---|
| 385 | eigen_assert(a.rows()==a.cols()); |
---|
| 386 | const Index size = a.rows(); |
---|
| 387 | m_matrix.resize(size, size); |
---|
| 388 | m_matrix = a; |
---|
| 389 | |
---|
| 390 | m_isInitialized = true; |
---|
| 391 | bool ok = Traits::inplace_decomposition(m_matrix); |
---|
| 392 | m_info = ok ? Success : NumericalIssue; |
---|
| 393 | |
---|
| 394 | return *this; |
---|
| 395 | } |
---|
| 396 | |
---|
| 397 | /** Performs a rank one update (or dowdate) of the current decomposition. |
---|
| 398 | * If A = LL^* before the rank one update, |
---|
| 399 | * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector |
---|
| 400 | * of same dimension. |
---|
| 401 | */ |
---|
| 402 | template<typename _MatrixType, int _UpLo> |
---|
| 403 | template<typename VectorType> |
---|
| 404 | LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) |
---|
| 405 | { |
---|
| 406 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); |
---|
| 407 | eigen_assert(v.size()==m_matrix.cols()); |
---|
| 408 | eigen_assert(m_isInitialized); |
---|
| 409 | if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) |
---|
| 410 | m_info = NumericalIssue; |
---|
| 411 | else |
---|
| 412 | m_info = Success; |
---|
| 413 | |
---|
| 414 | return *this; |
---|
| 415 | } |
---|
| 416 | |
---|
| 417 | namespace internal { |
---|
| 418 | template<typename _MatrixType, int UpLo, typename Rhs> |
---|
| 419 | struct solve_retval<LLT<_MatrixType, UpLo>, Rhs> |
---|
| 420 | : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs> |
---|
| 421 | { |
---|
| 422 | typedef LLT<_MatrixType,UpLo> LLTType; |
---|
| 423 | EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) |
---|
| 424 | |
---|
| 425 | template<typename Dest> void evalTo(Dest& dst) const |
---|
| 426 | { |
---|
| 427 | dst = rhs(); |
---|
| 428 | dec().solveInPlace(dst); |
---|
| 429 | } |
---|
| 430 | }; |
---|
| 431 | } |
---|
| 432 | |
---|
| 433 | /** \internal use x = llt_object.solve(x); |
---|
| 434 | * |
---|
| 435 | * This is the \em in-place version of solve(). |
---|
| 436 | * |
---|
| 437 | * \param bAndX represents both the right-hand side matrix b and result x. |
---|
| 438 | * |
---|
| 439 | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
---|
| 440 | * |
---|
| 441 | * This version avoids a copy when the right hand side matrix b is not |
---|
| 442 | * needed anymore. |
---|
| 443 | * |
---|
| 444 | * \sa LLT::solve(), MatrixBase::llt() |
---|
| 445 | */ |
---|
| 446 | template<typename MatrixType, int _UpLo> |
---|
| 447 | template<typename Derived> |
---|
| 448 | void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
---|
| 449 | { |
---|
| 450 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
| 451 | eigen_assert(m_matrix.rows()==bAndX.rows()); |
---|
| 452 | matrixL().solveInPlace(bAndX); |
---|
| 453 | matrixU().solveInPlace(bAndX); |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | /** \returns the matrix represented by the decomposition, |
---|
| 457 | * i.e., it returns the product: L L^*. |
---|
| 458 | * This function is provided for debug purpose. */ |
---|
| 459 | template<typename MatrixType, int _UpLo> |
---|
| 460 | MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const |
---|
| 461 | { |
---|
| 462 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
| 463 | return matrixL() * matrixL().adjoint().toDenseMatrix(); |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | /** \cholesky_module |
---|
| 467 | * \returns the LLT decomposition of \c *this |
---|
| 468 | */ |
---|
| 469 | template<typename Derived> |
---|
| 470 | inline const LLT<typename MatrixBase<Derived>::PlainObject> |
---|
| 471 | MatrixBase<Derived>::llt() const |
---|
| 472 | { |
---|
| 473 | return LLT<PlainObject>(derived()); |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | /** \cholesky_module |
---|
| 477 | * \returns the LLT decomposition of \c *this |
---|
| 478 | */ |
---|
| 479 | template<typename MatrixType, unsigned int UpLo> |
---|
| 480 | inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
---|
| 481 | SelfAdjointView<MatrixType, UpLo>::llt() const |
---|
| 482 | { |
---|
| 483 | return LLT<PlainObject,UpLo>(m_matrix); |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | } // end namespace Eigen |
---|
| 487 | |
---|
| 488 | #endif // EIGEN_LLT_H |
---|