1 | // This file is part of Eigen, a lightweight C++ template library |
---|
2 | // for linear algebra. |
---|
3 | // |
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
---|
5 | // |
---|
6 | // This Source Code Form is subject to the terms of the Mozilla |
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
---|
9 | |
---|
10 | #ifndef EIGEN_LLT_H |
---|
11 | #define EIGEN_LLT_H |
---|
12 | |
---|
13 | namespace Eigen { |
---|
14 | |
---|
15 | namespace internal{ |
---|
16 | template<typename MatrixType, int UpLo> struct LLT_Traits; |
---|
17 | } |
---|
18 | |
---|
19 | /** \ingroup Cholesky_Module |
---|
20 | * |
---|
21 | * \class LLT |
---|
22 | * |
---|
23 | * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features |
---|
24 | * |
---|
25 | * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition |
---|
26 | * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. |
---|
27 | * The other triangular part won't be read. |
---|
28 | * |
---|
29 | * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite |
---|
30 | * matrix A such that A = LL^* = U^*U, where L is lower triangular. |
---|
31 | * |
---|
32 | * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, |
---|
33 | * for that purpose, we recommend the Cholesky decomposition without square root which is more stable |
---|
34 | * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other |
---|
35 | * situations like generalised eigen problems with hermitian matrices. |
---|
36 | * |
---|
37 | * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, |
---|
38 | * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations |
---|
39 | * has a solution. |
---|
40 | * |
---|
41 | * Example: \include LLT_example.cpp |
---|
42 | * Output: \verbinclude LLT_example.out |
---|
43 | * |
---|
44 | * \sa MatrixBase::llt(), class LDLT |
---|
45 | */ |
---|
46 | /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) |
---|
47 | * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, |
---|
48 | * the strict lower part does not have to store correct values. |
---|
49 | */ |
---|
50 | template<typename _MatrixType, int _UpLo> class LLT |
---|
51 | { |
---|
52 | public: |
---|
53 | typedef _MatrixType MatrixType; |
---|
54 | enum { |
---|
55 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
---|
56 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
---|
57 | Options = MatrixType::Options, |
---|
58 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
---|
59 | }; |
---|
60 | typedef typename MatrixType::Scalar Scalar; |
---|
61 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
---|
62 | typedef typename MatrixType::Index Index; |
---|
63 | |
---|
64 | enum { |
---|
65 | PacketSize = internal::packet_traits<Scalar>::size, |
---|
66 | AlignmentMask = int(PacketSize)-1, |
---|
67 | UpLo = _UpLo |
---|
68 | }; |
---|
69 | |
---|
70 | typedef internal::LLT_Traits<MatrixType,UpLo> Traits; |
---|
71 | |
---|
72 | /** |
---|
73 | * \brief Default Constructor. |
---|
74 | * |
---|
75 | * The default constructor is useful in cases in which the user intends to |
---|
76 | * perform decompositions via LLT::compute(const MatrixType&). |
---|
77 | */ |
---|
78 | LLT() : m_matrix(), m_isInitialized(false) {} |
---|
79 | |
---|
80 | /** \brief Default Constructor with memory preallocation |
---|
81 | * |
---|
82 | * Like the default constructor but with preallocation of the internal data |
---|
83 | * according to the specified problem \a size. |
---|
84 | * \sa LLT() |
---|
85 | */ |
---|
86 | LLT(Index size) : m_matrix(size, size), |
---|
87 | m_isInitialized(false) {} |
---|
88 | |
---|
89 | LLT(const MatrixType& matrix) |
---|
90 | : m_matrix(matrix.rows(), matrix.cols()), |
---|
91 | m_isInitialized(false) |
---|
92 | { |
---|
93 | compute(matrix); |
---|
94 | } |
---|
95 | |
---|
96 | /** \returns a view of the upper triangular matrix U */ |
---|
97 | inline typename Traits::MatrixU matrixU() const |
---|
98 | { |
---|
99 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
100 | return Traits::getU(m_matrix); |
---|
101 | } |
---|
102 | |
---|
103 | /** \returns a view of the lower triangular matrix L */ |
---|
104 | inline typename Traits::MatrixL matrixL() const |
---|
105 | { |
---|
106 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
107 | return Traits::getL(m_matrix); |
---|
108 | } |
---|
109 | |
---|
110 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
---|
111 | * |
---|
112 | * Since this LLT class assumes anyway that the matrix A is invertible, the solution |
---|
113 | * theoretically exists and is unique regardless of b. |
---|
114 | * |
---|
115 | * Example: \include LLT_solve.cpp |
---|
116 | * Output: \verbinclude LLT_solve.out |
---|
117 | * |
---|
118 | * \sa solveInPlace(), MatrixBase::llt() |
---|
119 | */ |
---|
120 | template<typename Rhs> |
---|
121 | inline const internal::solve_retval<LLT, Rhs> |
---|
122 | solve(const MatrixBase<Rhs>& b) const |
---|
123 | { |
---|
124 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
125 | eigen_assert(m_matrix.rows()==b.rows() |
---|
126 | && "LLT::solve(): invalid number of rows of the right hand side matrix b"); |
---|
127 | return internal::solve_retval<LLT, Rhs>(*this, b.derived()); |
---|
128 | } |
---|
129 | |
---|
130 | #ifdef EIGEN2_SUPPORT |
---|
131 | template<typename OtherDerived, typename ResultType> |
---|
132 | bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const |
---|
133 | { |
---|
134 | *result = this->solve(b); |
---|
135 | return true; |
---|
136 | } |
---|
137 | |
---|
138 | bool isPositiveDefinite() const { return true; } |
---|
139 | #endif |
---|
140 | |
---|
141 | template<typename Derived> |
---|
142 | void solveInPlace(MatrixBase<Derived> &bAndX) const; |
---|
143 | |
---|
144 | LLT& compute(const MatrixType& matrix); |
---|
145 | |
---|
146 | /** \returns the LLT decomposition matrix |
---|
147 | * |
---|
148 | * TODO: document the storage layout |
---|
149 | */ |
---|
150 | inline const MatrixType& matrixLLT() const |
---|
151 | { |
---|
152 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
153 | return m_matrix; |
---|
154 | } |
---|
155 | |
---|
156 | MatrixType reconstructedMatrix() const; |
---|
157 | |
---|
158 | |
---|
159 | /** \brief Reports whether previous computation was successful. |
---|
160 | * |
---|
161 | * \returns \c Success if computation was succesful, |
---|
162 | * \c NumericalIssue if the matrix.appears to be negative. |
---|
163 | */ |
---|
164 | ComputationInfo info() const |
---|
165 | { |
---|
166 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
167 | return m_info; |
---|
168 | } |
---|
169 | |
---|
170 | inline Index rows() const { return m_matrix.rows(); } |
---|
171 | inline Index cols() const { return m_matrix.cols(); } |
---|
172 | |
---|
173 | template<typename VectorType> |
---|
174 | LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); |
---|
175 | |
---|
176 | protected: |
---|
177 | /** \internal |
---|
178 | * Used to compute and store L |
---|
179 | * The strict upper part is not used and even not initialized. |
---|
180 | */ |
---|
181 | MatrixType m_matrix; |
---|
182 | bool m_isInitialized; |
---|
183 | ComputationInfo m_info; |
---|
184 | }; |
---|
185 | |
---|
186 | namespace internal { |
---|
187 | |
---|
188 | template<typename Scalar, int UpLo> struct llt_inplace; |
---|
189 | |
---|
190 | template<typename MatrixType, typename VectorType> |
---|
191 | static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) |
---|
192 | { |
---|
193 | typedef typename MatrixType::Scalar Scalar; |
---|
194 | typedef typename MatrixType::RealScalar RealScalar; |
---|
195 | typedef typename MatrixType::Index Index; |
---|
196 | typedef typename MatrixType::ColXpr ColXpr; |
---|
197 | typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; |
---|
198 | typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; |
---|
199 | typedef Matrix<Scalar,Dynamic,1> TempVectorType; |
---|
200 | typedef typename TempVectorType::SegmentReturnType TempVecSegment; |
---|
201 | |
---|
202 | int n = mat.cols(); |
---|
203 | eigen_assert(mat.rows()==n && vec.size()==n); |
---|
204 | |
---|
205 | TempVectorType temp; |
---|
206 | |
---|
207 | if(sigma>0) |
---|
208 | { |
---|
209 | // This version is based on Givens rotations. |
---|
210 | // It is faster than the other one below, but only works for updates, |
---|
211 | // i.e., for sigma > 0 |
---|
212 | temp = sqrt(sigma) * vec; |
---|
213 | |
---|
214 | for(int i=0; i<n; ++i) |
---|
215 | { |
---|
216 | JacobiRotation<Scalar> g; |
---|
217 | g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); |
---|
218 | |
---|
219 | int rs = n-i-1; |
---|
220 | if(rs>0) |
---|
221 | { |
---|
222 | ColXprSegment x(mat.col(i).tail(rs)); |
---|
223 | TempVecSegment y(temp.tail(rs)); |
---|
224 | apply_rotation_in_the_plane(x, y, g); |
---|
225 | } |
---|
226 | } |
---|
227 | } |
---|
228 | else |
---|
229 | { |
---|
230 | temp = vec; |
---|
231 | RealScalar beta = 1; |
---|
232 | for(int j=0; j<n; ++j) |
---|
233 | { |
---|
234 | RealScalar Ljj = real(mat.coeff(j,j)); |
---|
235 | RealScalar dj = abs2(Ljj); |
---|
236 | Scalar wj = temp.coeff(j); |
---|
237 | RealScalar swj2 = sigma*abs2(wj); |
---|
238 | RealScalar gamma = dj*beta + swj2; |
---|
239 | |
---|
240 | RealScalar x = dj + swj2/beta; |
---|
241 | if (x<=RealScalar(0)) |
---|
242 | return j; |
---|
243 | RealScalar nLjj = sqrt(x); |
---|
244 | mat.coeffRef(j,j) = nLjj; |
---|
245 | beta += swj2/dj; |
---|
246 | |
---|
247 | // Update the terms of L |
---|
248 | Index rs = n-j-1; |
---|
249 | if(rs) |
---|
250 | { |
---|
251 | temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); |
---|
252 | if(gamma != 0) |
---|
253 | mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*conj(wj)/gamma)*temp.tail(rs); |
---|
254 | } |
---|
255 | } |
---|
256 | } |
---|
257 | return -1; |
---|
258 | } |
---|
259 | |
---|
260 | template<typename Scalar> struct llt_inplace<Scalar, Lower> |
---|
261 | { |
---|
262 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
263 | template<typename MatrixType> |
---|
264 | static typename MatrixType::Index unblocked(MatrixType& mat) |
---|
265 | { |
---|
266 | typedef typename MatrixType::Index Index; |
---|
267 | |
---|
268 | eigen_assert(mat.rows()==mat.cols()); |
---|
269 | const Index size = mat.rows(); |
---|
270 | for(Index k = 0; k < size; ++k) |
---|
271 | { |
---|
272 | Index rs = size-k-1; // remaining size |
---|
273 | |
---|
274 | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
---|
275 | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
---|
276 | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
---|
277 | |
---|
278 | RealScalar x = real(mat.coeff(k,k)); |
---|
279 | if (k>0) x -= A10.squaredNorm(); |
---|
280 | if (x<=RealScalar(0)) |
---|
281 | return k; |
---|
282 | mat.coeffRef(k,k) = x = sqrt(x); |
---|
283 | if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); |
---|
284 | if (rs>0) A21 *= RealScalar(1)/x; |
---|
285 | } |
---|
286 | return -1; |
---|
287 | } |
---|
288 | |
---|
289 | template<typename MatrixType> |
---|
290 | static typename MatrixType::Index blocked(MatrixType& m) |
---|
291 | { |
---|
292 | typedef typename MatrixType::Index Index; |
---|
293 | eigen_assert(m.rows()==m.cols()); |
---|
294 | Index size = m.rows(); |
---|
295 | if(size<32) |
---|
296 | return unblocked(m); |
---|
297 | |
---|
298 | Index blockSize = size/8; |
---|
299 | blockSize = (blockSize/16)*16; |
---|
300 | blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); |
---|
301 | |
---|
302 | for (Index k=0; k<size; k+=blockSize) |
---|
303 | { |
---|
304 | // partition the matrix: |
---|
305 | // A00 | - | - |
---|
306 | // lu = A10 | A11 | - |
---|
307 | // A20 | A21 | A22 |
---|
308 | Index bs = (std::min)(blockSize, size-k); |
---|
309 | Index rs = size - k - bs; |
---|
310 | Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); |
---|
311 | Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); |
---|
312 | Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); |
---|
313 | |
---|
314 | Index ret; |
---|
315 | if((ret=unblocked(A11))>=0) return k+ret; |
---|
316 | if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); |
---|
317 | if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck |
---|
318 | } |
---|
319 | return -1; |
---|
320 | } |
---|
321 | |
---|
322 | template<typename MatrixType, typename VectorType> |
---|
323 | static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
---|
324 | { |
---|
325 | return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); |
---|
326 | } |
---|
327 | }; |
---|
328 | |
---|
329 | template<typename Scalar> struct llt_inplace<Scalar, Upper> |
---|
330 | { |
---|
331 | typedef typename NumTraits<Scalar>::Real RealScalar; |
---|
332 | |
---|
333 | template<typename MatrixType> |
---|
334 | static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat) |
---|
335 | { |
---|
336 | Transpose<MatrixType> matt(mat); |
---|
337 | return llt_inplace<Scalar, Lower>::unblocked(matt); |
---|
338 | } |
---|
339 | template<typename MatrixType> |
---|
340 | static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat) |
---|
341 | { |
---|
342 | Transpose<MatrixType> matt(mat); |
---|
343 | return llt_inplace<Scalar, Lower>::blocked(matt); |
---|
344 | } |
---|
345 | template<typename MatrixType, typename VectorType> |
---|
346 | static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
---|
347 | { |
---|
348 | Transpose<MatrixType> matt(mat); |
---|
349 | return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); |
---|
350 | } |
---|
351 | }; |
---|
352 | |
---|
353 | template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> |
---|
354 | { |
---|
355 | typedef const TriangularView<const MatrixType, Lower> MatrixL; |
---|
356 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; |
---|
357 | static inline MatrixL getL(const MatrixType& m) { return m; } |
---|
358 | static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
---|
359 | static bool inplace_decomposition(MatrixType& m) |
---|
360 | { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } |
---|
361 | }; |
---|
362 | |
---|
363 | template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> |
---|
364 | { |
---|
365 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; |
---|
366 | typedef const TriangularView<const MatrixType, Upper> MatrixU; |
---|
367 | static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } |
---|
368 | static inline MatrixU getU(const MatrixType& m) { return m; } |
---|
369 | static bool inplace_decomposition(MatrixType& m) |
---|
370 | { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } |
---|
371 | }; |
---|
372 | |
---|
373 | } // end namespace internal |
---|
374 | |
---|
375 | /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix |
---|
376 | * |
---|
377 | * \returns a reference to *this |
---|
378 | * |
---|
379 | * Example: \include TutorialLinAlgComputeTwice.cpp |
---|
380 | * Output: \verbinclude TutorialLinAlgComputeTwice.out |
---|
381 | */ |
---|
382 | template<typename MatrixType, int _UpLo> |
---|
383 | LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) |
---|
384 | { |
---|
385 | eigen_assert(a.rows()==a.cols()); |
---|
386 | const Index size = a.rows(); |
---|
387 | m_matrix.resize(size, size); |
---|
388 | m_matrix = a; |
---|
389 | |
---|
390 | m_isInitialized = true; |
---|
391 | bool ok = Traits::inplace_decomposition(m_matrix); |
---|
392 | m_info = ok ? Success : NumericalIssue; |
---|
393 | |
---|
394 | return *this; |
---|
395 | } |
---|
396 | |
---|
397 | /** Performs a rank one update (or dowdate) of the current decomposition. |
---|
398 | * If A = LL^* before the rank one update, |
---|
399 | * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector |
---|
400 | * of same dimension. |
---|
401 | */ |
---|
402 | template<typename _MatrixType, int _UpLo> |
---|
403 | template<typename VectorType> |
---|
404 | LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) |
---|
405 | { |
---|
406 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); |
---|
407 | eigen_assert(v.size()==m_matrix.cols()); |
---|
408 | eigen_assert(m_isInitialized); |
---|
409 | if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) |
---|
410 | m_info = NumericalIssue; |
---|
411 | else |
---|
412 | m_info = Success; |
---|
413 | |
---|
414 | return *this; |
---|
415 | } |
---|
416 | |
---|
417 | namespace internal { |
---|
418 | template<typename _MatrixType, int UpLo, typename Rhs> |
---|
419 | struct solve_retval<LLT<_MatrixType, UpLo>, Rhs> |
---|
420 | : solve_retval_base<LLT<_MatrixType, UpLo>, Rhs> |
---|
421 | { |
---|
422 | typedef LLT<_MatrixType,UpLo> LLTType; |
---|
423 | EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) |
---|
424 | |
---|
425 | template<typename Dest> void evalTo(Dest& dst) const |
---|
426 | { |
---|
427 | dst = rhs(); |
---|
428 | dec().solveInPlace(dst); |
---|
429 | } |
---|
430 | }; |
---|
431 | } |
---|
432 | |
---|
433 | /** \internal use x = llt_object.solve(x); |
---|
434 | * |
---|
435 | * This is the \em in-place version of solve(). |
---|
436 | * |
---|
437 | * \param bAndX represents both the right-hand side matrix b and result x. |
---|
438 | * |
---|
439 | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
---|
440 | * |
---|
441 | * This version avoids a copy when the right hand side matrix b is not |
---|
442 | * needed anymore. |
---|
443 | * |
---|
444 | * \sa LLT::solve(), MatrixBase::llt() |
---|
445 | */ |
---|
446 | template<typename MatrixType, int _UpLo> |
---|
447 | template<typename Derived> |
---|
448 | void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
---|
449 | { |
---|
450 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
451 | eigen_assert(m_matrix.rows()==bAndX.rows()); |
---|
452 | matrixL().solveInPlace(bAndX); |
---|
453 | matrixU().solveInPlace(bAndX); |
---|
454 | } |
---|
455 | |
---|
456 | /** \returns the matrix represented by the decomposition, |
---|
457 | * i.e., it returns the product: L L^*. |
---|
458 | * This function is provided for debug purpose. */ |
---|
459 | template<typename MatrixType, int _UpLo> |
---|
460 | MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const |
---|
461 | { |
---|
462 | eigen_assert(m_isInitialized && "LLT is not initialized."); |
---|
463 | return matrixL() * matrixL().adjoint().toDenseMatrix(); |
---|
464 | } |
---|
465 | |
---|
466 | /** \cholesky_module |
---|
467 | * \returns the LLT decomposition of \c *this |
---|
468 | */ |
---|
469 | template<typename Derived> |
---|
470 | inline const LLT<typename MatrixBase<Derived>::PlainObject> |
---|
471 | MatrixBase<Derived>::llt() const |
---|
472 | { |
---|
473 | return LLT<PlainObject>(derived()); |
---|
474 | } |
---|
475 | |
---|
476 | /** \cholesky_module |
---|
477 | * \returns the LLT decomposition of \c *this |
---|
478 | */ |
---|
479 | template<typename MatrixType, unsigned int UpLo> |
---|
480 | inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
---|
481 | SelfAdjointView<MatrixType, UpLo>::llt() const |
---|
482 | { |
---|
483 | return LLT<PlainObject,UpLo>(m_matrix); |
---|
484 | } |
---|
485 | |
---|
486 | } // end namespace Eigen |
---|
487 | |
---|
488 | #endif // EIGEN_LLT_H |
---|