1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
35 | [Item("ReplaceBranchMultiMoveGenerator", "")]
|
---|
36 | [StorableClass]
|
---|
37 | public class ReplaceBranchMultiMoveGenerator : SingleSuccessorOperator, IStochasticOperator, ISymbolicExpressionTreeMoveOperator, IMultiMoveGenerator,
|
---|
38 | ISymbolicDataAnalysisInterpreterOperator, ISymbolicExpressionTreeGrammarBasedOperator, ISymbolicExpressionTreeSizeConstraintOperator {
|
---|
39 | public ILookupParameter<IRandom> RandomParameter {
|
---|
40 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
41 | }
|
---|
42 | public IValueLookupParameter<IntValue> SampleSizeParameter {
|
---|
43 | get { return (IValueLookupParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
46 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters["Interpreter"]; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public IValueLookupParameter<ISymbolicExpressionGrammar> SymbolicExpressionTreeGrammarParameter {
|
---|
50 | get { return (IValueLookupParameter<ISymbolicExpressionGrammar>)Parameters["Grammar"]; }
|
---|
51 | }
|
---|
52 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
53 | get { return (ILookupParameter<IRegressionProblemData>)Parameters["ProblemData"]; }
|
---|
54 | }
|
---|
55 | public IntValue SampleSize {
|
---|
56 | get { return SampleSizeParameter.Value; }
|
---|
57 | set { SampleSizeParameter.Value = value; }
|
---|
58 | }
|
---|
59 | public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
60 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters["SymbolicExpressionTree"]; }
|
---|
61 | }
|
---|
62 | public ILookupParameter<ReplaceBranchMove> ReplaceBranchMoveParameter {
|
---|
63 | get { return (LookupParameter<ReplaceBranchMove>)Parameters["ReplaceBranchMove"]; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public IValueParameter<IntValue> ReplacementBranchesPoolSize {
|
---|
67 | get { return (IValueParameter<IntValue>)Parameters["ReplacementBranchesPoolSize"]; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | public IValueParameter<IntValue> MaxReplacementBranchLength {
|
---|
71 | get { return (IValueParameter<IntValue>)Parameters["MaxReplacementBranchLength"]; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public IValueParameter<IntValue> MaxReplacementBranchDepth {
|
---|
75 | get { return (IValueParameter<IntValue>)Parameters["MaxReplacementBranchDepth"]; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | protected ScopeParameter CurrentScopeParameter {
|
---|
79 | get { return (ScopeParameter)Parameters["CurrentScope"]; }
|
---|
80 | }
|
---|
81 |
|
---|
82 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
|
---|
83 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumSymbolicExpressionTreeDepth"]; }
|
---|
84 | }
|
---|
85 |
|
---|
86 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
87 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumSymbolicExpressionTreeLength"]; }
|
---|
88 | }
|
---|
89 |
|
---|
90 | public IValueLookupParameter<IntValue> NeighbourhoodSizeParameter {
|
---|
91 | get { return (IValueLookupParameter<IntValue>)Parameters["NeighbourhoodSize"]; }
|
---|
92 | }
|
---|
93 | public IValueLookupParameter<BoolValue> SemanticParameter {
|
---|
94 | get { return (IValueLookupParameter<BoolValue>)Parameters["Semantic"]; }
|
---|
95 | }
|
---|
96 | public ILookupParameter<ItemList<ISymbolicExpressionTree>> FragmentsParameter {
|
---|
97 | get { return (ILookupParameter<ItemList<ISymbolicExpressionTree>>)Parameters["Fragments"]; }
|
---|
98 | }
|
---|
99 | public ILookupParameter<ItemList<DoubleArray>> FragmentOutputsParameter {
|
---|
100 | get { return (ILookupParameter<ItemList<DoubleArray>>)Parameters["FragmentOutputs"]; }
|
---|
101 | }
|
---|
102 |
|
---|
103 | [StorableConstructor]
|
---|
104 | protected ReplaceBranchMultiMoveGenerator(bool deserializing) : base(deserializing) { }
|
---|
105 | protected ReplaceBranchMultiMoveGenerator(ReplaceBranchMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
|
---|
106 | public ReplaceBranchMultiMoveGenerator()
|
---|
107 | : base() {
|
---|
108 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator."));
|
---|
109 | Parameters.Add(new ValueLookupParameter<IntValue>("SampleSize", "The number of moves to generate."));
|
---|
110 |
|
---|
111 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>("SymbolicExpressionTree", "The symbolic expression tree for which moves should be generated."));
|
---|
112 | Parameters.Add(new LookupParameter<ReplaceBranchMove>("ReplaceBranchMove", "The moves that should be generated in subscopes."));
|
---|
113 | Parameters.Add(new ScopeParameter("CurrentScope", "The current scope where the moves should be added as subscopes."));
|
---|
114 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionGrammar>("Grammar"));
|
---|
115 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>("Interpreter"));
|
---|
116 | Parameters.Add(new LookupParameter<IRegressionProblemData>("ProblemData"));
|
---|
117 | Parameters.Add(new ValueParameter<IntValue>("ReplacementBranchesPoolSize", new IntValue(10000)));
|
---|
118 | Parameters.Add(new ValueParameter<IntValue>("MaxReplacementBranchLength", new IntValue(8)));
|
---|
119 | Parameters.Add(new ValueParameter<IntValue>("MaxReplacementBranchDepth", new IntValue(4)));
|
---|
120 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeDepth"));
|
---|
121 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeLength"));
|
---|
122 | Parameters.Add(new ValueLookupParameter<IntValue>("NeighbourhoodSize", new IntValue(5)));
|
---|
123 | Parameters.Add(new ValueLookupParameter<BoolValue>("Semantic", new BoolValue()));
|
---|
124 | Parameters.Add(new LookupParameter<ItemList<ISymbolicExpressionTree>>("Fragments"));
|
---|
125 | Parameters.Add(new LookupParameter<ItemList<DoubleArray>>("FragmentOutputs"));
|
---|
126 | }
|
---|
127 |
|
---|
128 |
|
---|
129 | [StorableHook(HookType.AfterDeserialization)]
|
---|
130 | private void AfterDeserialization() {
|
---|
131 | if (!Parameters.ContainsKey("MaximumSymbolicExpressionTreeDepth")) {
|
---|
132 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeDepth"));
|
---|
133 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeLength"));
|
---|
134 | }
|
---|
135 | if (!Parameters.ContainsKey("NeighbourhoodSize")) {
|
---|
136 | Parameters.Add(new ValueLookupParameter<IntValue>("NeighbourhoodSize", new IntValue(5)));
|
---|
137 | }
|
---|
138 |
|
---|
139 | }
|
---|
140 |
|
---|
141 |
|
---|
142 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
143 | return new ReplaceBranchMultiMoveGenerator(this, cloner);
|
---|
144 | }
|
---|
145 |
|
---|
146 | public override IOperation Apply() {
|
---|
147 | var random = RandomParameter.ActualValue;
|
---|
148 | if (FragmentsParameter.ActualValue == null || FragmentOutputsParameter.ActualValue == null) {
|
---|
149 | InitializeOperator();
|
---|
150 | }
|
---|
151 |
|
---|
152 | var tree = SymbolicExpressionTreeParameter.ActualValue;
|
---|
153 |
|
---|
154 | string moveParameterName = ReplaceBranchMoveParameter.ActualName;
|
---|
155 | var moveScopes = new List<Scope>();
|
---|
156 | int n = SampleSizeParameter.ActualValue.Value;
|
---|
157 |
|
---|
158 | var moves = GenerateMoves(tree, random, n);
|
---|
159 |
|
---|
160 | foreach (var m in moves) {
|
---|
161 | var moveScope = new Scope(moveScopes.Count.ToString());
|
---|
162 | moveScope.Variables.Add(new HeuristicLab.Core.Variable(moveParameterName, m));
|
---|
163 | moveScopes.Add(moveScope);
|
---|
164 | }
|
---|
165 | CurrentScopeParameter.ActualValue.SubScopes.AddRange(moveScopes);
|
---|
166 | return base.Apply();
|
---|
167 | }
|
---|
168 |
|
---|
169 | public IEnumerable<ReplaceBranchMove> GenerateMoves(ISymbolicExpressionTree tree, IRandom random, int n) {
|
---|
170 | int maxDepth = MaximumSymbolicExpressionTreeDepthParameter.ActualValue.Value;
|
---|
171 | int maxLength = MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value;
|
---|
172 | var possibleInternalChildren = (from parent in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
173 | from i in Enumerable.Range(0, parent.SubtreeCount)
|
---|
174 | let currentChild = parent.GetSubtree(i)
|
---|
175 | where currentChild.SubtreeCount > 0
|
---|
176 | where tree.Root.GetBranchLevel(currentChild) < maxDepth + 2
|
---|
177 | where tree.Length - currentChild.GetLength() < maxLength
|
---|
178 | select new CutPoint(parent, i)).ToArray();
|
---|
179 |
|
---|
180 | var possibleLeaveChildren = (from parent in tree.Root.GetSubtree(0).IterateNodesPrefix()
|
---|
181 | from i in Enumerable.Range(0, parent.SubtreeCount)
|
---|
182 | let currentChild = parent.GetSubtree(i)
|
---|
183 | where currentChild.SubtreeCount == 0
|
---|
184 | where tree.Root.GetBranchLevel(currentChild) < maxDepth + 2
|
---|
185 | where tree.Length - 1 < maxLength
|
---|
186 | select new CutPoint(parent, i)).ToArray();
|
---|
187 | if (possibleInternalChildren.Length == 0) possibleInternalChildren = possibleLeaveChildren;
|
---|
188 | if (possibleLeaveChildren.Length == 0) possibleLeaveChildren = possibleInternalChildren;
|
---|
189 |
|
---|
190 | var root = (new ProgramRootSymbol()).CreateTreeNode();
|
---|
191 | var start = (new StartSymbol()).CreateTreeNode();
|
---|
192 | root.AddSubtree(start);
|
---|
193 | var t = new SymbolicExpressionTree(root);
|
---|
194 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
195 | var ds = ProblemDataParameter.ActualValue.Dataset;
|
---|
196 | var rows = ProblemDataParameter.ActualValue.TrainingIndices;
|
---|
197 |
|
---|
198 | bool semantic = SemanticParameter.ActualValue.Value;
|
---|
199 | int maxNeighbours = NeighbourhoodSizeParameter.ActualValue.Value;
|
---|
200 | var count = 0;
|
---|
201 | while (count < n) {
|
---|
202 | // select a random replacement point
|
---|
203 | CutPoint[] possibleChildren;
|
---|
204 | if (random.NextDouble() < 0.9)
|
---|
205 | possibleChildren = possibleInternalChildren;
|
---|
206 | else possibleChildren = possibleLeaveChildren;
|
---|
207 | var selected = possibleChildren[random.Next(possibleChildren.Length)];
|
---|
208 | // evaluate
|
---|
209 | start.AddSubtree(selected.Parent.GetSubtree(selected.ChildIndex));
|
---|
210 | var output = interpreter.GetSymbolicExpressionTreeValues(t, ds, rows).ToArray();
|
---|
211 | start.RemoveSubtree(0);
|
---|
212 |
|
---|
213 | if (semantic) {
|
---|
214 | foreach (var m in FindMostSimilarFragments(tree, maxLength, maxDepth, selected, random, maxNeighbours, output)) {
|
---|
215 | yield return m;
|
---|
216 | count++;
|
---|
217 | }
|
---|
218 | } else {
|
---|
219 | foreach (var m in FindRandomFragments(tree, maxLength, maxDepth, selected, random, maxNeighbours, output)) {
|
---|
220 | yield return m;
|
---|
221 | count++;
|
---|
222 | }
|
---|
223 | }
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|
227 | private IEnumerable<ReplaceBranchMove> FindRandomFragments(ISymbolicExpressionTree tree, int maxLength, int maxDepth, CutPoint selected,
|
---|
228 | IRandom random, int maxNeighbours, double[] output) {
|
---|
229 | var selectedFragments = new List<int>(maxNeighbours);
|
---|
230 | int treeLength = tree.Length;
|
---|
231 | int removedFragementLength = selected.Parent.GetSubtree(selected.ChildIndex).GetLength();
|
---|
232 | int parentBranchLevel = tree.Root.GetBranchLevel(selected.Parent);
|
---|
233 | int iterations = 0;
|
---|
234 | int maxIterations = maxNeighbours + 100;
|
---|
235 | var fragments = FragmentsParameter.ActualValue;
|
---|
236 | var fragmentOutput = FragmentOutputsParameter.ActualValue;
|
---|
237 | // select random fragments
|
---|
238 | while (selectedFragments.Count < maxNeighbours && iterations++ < maxIterations) {
|
---|
239 | int r = random.Next(fragments.Count);
|
---|
240 | var selectedFragment = fragments[r];
|
---|
241 | var selectedFragmentOutput = fragmentOutput[r];
|
---|
242 | // if the branch is allowed in the selected point
|
---|
243 | if (treeLength - removedFragementLength + selectedFragment.Length <= maxLength + 4 &&
|
---|
244 | parentBranchLevel + selectedFragment.Depth - 2 <= maxDepth + 2 &&
|
---|
245 | tree.Root.Grammar.IsAllowedChildSymbol(selected.Parent.Symbol, selectedFragment.Root.GetSubtree(0).GetSubtree(0).Symbol, selected.ChildIndex)) {
|
---|
246 | selectedFragments.Add(r);
|
---|
247 | }
|
---|
248 | }
|
---|
249 | // yield moves (we need to add linear scaling parameters for the inserted tree)
|
---|
250 | return selectedFragments
|
---|
251 | .Select(i => new ReplaceBranchMove(tree, selected.Parent, selected.ChildIndex, fragments[i].Root.GetSubtree(0).GetSubtree(0), output, fragmentOutput[i].ToArray(), i));
|
---|
252 | }
|
---|
253 |
|
---|
254 | private IEnumerable<ReplaceBranchMove> FindMostSimilarFragments(ISymbolicExpressionTree tree, int maxLength, int maxDepth, CutPoint selected,
|
---|
255 | IRandom random, int maxNeighbours, double[] output) {
|
---|
256 | var fragments = FragmentsParameter.ActualValue;
|
---|
257 | var fragmentOutput = FragmentOutputsParameter.ActualValue;
|
---|
258 | var bestTrees = new SortedList<double, List<int>>(fragments.Count);
|
---|
259 | int treeLength = tree.Length;
|
---|
260 | int removedFragementLength = selected.Parent.GetSubtree(selected.ChildIndex).GetLength();
|
---|
261 | int parentBranchLevel = tree.Root.GetBranchLevel(selected.Parent);
|
---|
262 | // iterate over the whole pool of branches for replacement
|
---|
263 | for (int i = 0; i < fragments.Count; i++) {
|
---|
264 | // if the branch is allowed in the selected point
|
---|
265 | if (treeLength - removedFragementLength + fragments[i].Length <= maxLength + 4 &&
|
---|
266 | parentBranchLevel + fragments[i].Depth - 2 <= maxDepth + 2 &&
|
---|
267 | tree.Root.Grammar.IsAllowedChildSymbol(selected.Parent.Symbol, fragments[i].Root.GetSubtree(0).GetSubtree(0).Symbol, selected.ChildIndex)) {
|
---|
268 | OnlineCalculatorError error;
|
---|
269 | // calculate the similarity
|
---|
270 | double similarity = OnlinePearsonsRSquaredCalculator.Calculate(output, fragmentOutput[i], out error);
|
---|
271 | similarity = Math.Round(similarity, 5);
|
---|
272 | if (error != OnlineCalculatorError.None) similarity = 0.0;
|
---|
273 | // if we found a new bestSimilarity then keep the replacement branch in a sorted list (keep maximally the n best for this replacement point)
|
---|
274 | if (similarity < 1 && ((bestTrees.Count < maxNeighbours) || similarity > bestTrees.ElementAt(0).Key)) {
|
---|
275 | if (!bestTrees.ContainsKey(similarity)) {
|
---|
276 | var l = new List<int>();
|
---|
277 | bestTrees.Add(similarity, l);
|
---|
278 | }
|
---|
279 | bestTrees[similarity].Add(i);
|
---|
280 | if (bestTrees.Count > maxNeighbours) bestTrees.RemoveAt(0);
|
---|
281 | }
|
---|
282 | }
|
---|
283 | }
|
---|
284 | int c = 0;
|
---|
285 | // yield moves (we need to add linear scaling parameters for the inserted tree)
|
---|
286 | while (c < maxNeighbours) {
|
---|
287 | var l = bestTrees.ElementAt(c % bestTrees.Count).Value;
|
---|
288 | var index = l[random.Next(l.Count)];
|
---|
289 | yield return
|
---|
290 | new ReplaceBranchMove(tree, selected.Parent, selected.ChildIndex, fragments[index].Root.GetSubtree(0).GetSubtree(0),
|
---|
291 | output, fragmentOutput[index].ToArray(), index);
|
---|
292 | c++;
|
---|
293 | }
|
---|
294 | }
|
---|
295 |
|
---|
296 | private void InitializeOperator() {
|
---|
297 | // init locally and set only at the end in case of exceptions
|
---|
298 | var trees = new List<ISymbolicExpressionTree>();
|
---|
299 | var treeOutput = new List<double[]>();
|
---|
300 | var random = RandomParameter.ActualValue;
|
---|
301 | var g = SymbolicExpressionTreeGrammarParameter.ActualValue;
|
---|
302 | var constSym = g.Symbols.Single(s => s is Constant);
|
---|
303 | // temporarily disable constants
|
---|
304 | double oldConstFreq = constSym.InitialFrequency;
|
---|
305 | constSym.InitialFrequency = 0.0;
|
---|
306 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
307 | var ds = ProblemDataParameter.ActualValue.Dataset;
|
---|
308 | var rows = ProblemDataParameter.ActualValue.TrainingIndices;
|
---|
309 | // create pool of random branches for replacement (no constants)
|
---|
310 | // and evaluate the output
|
---|
311 | // only keep fragments if the output does not contain invalid values
|
---|
312 | var n = ReplacementBranchesPoolSize.Value.Value;
|
---|
313 | while (trees.Count < n) {
|
---|
314 | var t = ProbabilisticTreeCreator.Create(random, g, MaxReplacementBranchLength.Value.Value, MaxReplacementBranchDepth.Value.Value);
|
---|
315 | var output = interpreter.GetSymbolicExpressionTreeValues(t, ds, rows);
|
---|
316 | if (!output.Any(x => double.IsInfinity(x) || double.IsNaN(x))) {
|
---|
317 | trees.Add(t);
|
---|
318 | treeOutput.Add(output.ToArray());
|
---|
319 | }
|
---|
320 | }
|
---|
321 | // enable constants again
|
---|
322 | constSym.InitialFrequency = oldConstFreq;
|
---|
323 | // set parameters
|
---|
324 | FragmentsParameter.ActualValue = new ItemList<ISymbolicExpressionTree>(trees);
|
---|
325 | FragmentOutputsParameter.ActualValue = new ItemList<DoubleArray>(treeOutput.Select(a => new DoubleArray(a)));
|
---|
326 | }
|
---|
327 | }
|
---|
328 | }
|
---|