1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
35 | [Item("ReplaceBranchMultiMoveGenerator", "")]
|
---|
36 | [StorableClass]
|
---|
37 | public class ReplaceBranchMultiMoveGenerator : SingleSuccessorOperator, IStochasticOperator, ISymbolicExpressionTreeMoveOperator, IMultiMoveGenerator,
|
---|
38 | ISymbolicDataAnalysisInterpreterOperator, ISymbolicExpressionTreeGrammarBasedOperator, ISymbolicExpressionTreeSizeConstraintOperator {
|
---|
39 | public ILookupParameter<IRandom> RandomParameter {
|
---|
40 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
41 | }
|
---|
42 | public IValueLookupParameter<IntValue> SampleSizeParameter {
|
---|
43 | get { return (IValueLookupParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
44 | }
|
---|
45 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
46 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters["Interpreter"]; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public IValueLookupParameter<ISymbolicExpressionGrammar> SymbolicExpressionTreeGrammarParameter {
|
---|
50 | get { return (IValueLookupParameter<ISymbolicExpressionGrammar>)Parameters["Grammar"]; }
|
---|
51 | }
|
---|
52 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
53 | get { return (ILookupParameter<IRegressionProblemData>)Parameters["ProblemData"]; }
|
---|
54 | }
|
---|
55 | public IntValue SampleSize {
|
---|
56 | get { return SampleSizeParameter.Value; }
|
---|
57 | set { SampleSizeParameter.Value = value; }
|
---|
58 | }
|
---|
59 | public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
60 | get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters["SymbolicExpressionTree"]; }
|
---|
61 | }
|
---|
62 | public ILookupParameter<ReplaceBranchMove> ReplaceBranchMoveParameter {
|
---|
63 | get { return (LookupParameter<ReplaceBranchMove>)Parameters["ReplaceBranchMove"]; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public IValueParameter<IntValue> ReplacementBranchesPoolSize {
|
---|
67 | get { return (IValueParameter<IntValue>)Parameters["ReplacementBranchesPoolSize"]; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | public IValueParameter<IntValue> MaxReplacementBranchLength {
|
---|
71 | get { return (IValueParameter<IntValue>)Parameters["MaxReplacementBranchLength"]; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public IValueParameter<IntValue> MaxReplacementBranchDepth {
|
---|
75 | get { return (IValueParameter<IntValue>)Parameters["MaxReplacementBranchDepth"]; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | protected ScopeParameter CurrentScopeParameter {
|
---|
79 | get { return (ScopeParameter)Parameters["CurrentScope"]; }
|
---|
80 | }
|
---|
81 |
|
---|
82 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
|
---|
83 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumSymbolicExpressionTreeDepth"]; }
|
---|
84 | }
|
---|
85 |
|
---|
86 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
87 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumSymbolicExpressionTreeLength"]; }
|
---|
88 | }
|
---|
89 |
|
---|
90 | public IValueLookupParameter<IntValue> NeighbourhoodSizeParameter {
|
---|
91 | get { return (IValueLookupParameter<IntValue>)Parameters["NeighbourhoodSize"]; }
|
---|
92 | }
|
---|
93 | public IValueLookupParameter<BoolValue> SemanticParameter {
|
---|
94 | get { return (IValueLookupParameter<BoolValue>)Parameters["Semantic"]; }
|
---|
95 | }
|
---|
96 |
|
---|
97 | private IList<ISymbolicExpressionTree> fragments;
|
---|
98 | private IList<double[]> fragmentOutput;
|
---|
99 |
|
---|
100 | [StorableConstructor]
|
---|
101 | protected ReplaceBranchMultiMoveGenerator(bool deserializing) : base(deserializing) { }
|
---|
102 | protected ReplaceBranchMultiMoveGenerator(ReplaceBranchMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
|
---|
103 | public ReplaceBranchMultiMoveGenerator()
|
---|
104 | : base() {
|
---|
105 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator."));
|
---|
106 | Parameters.Add(new ValueLookupParameter<IntValue>("SampleSize", "The number of moves to generate."));
|
---|
107 |
|
---|
108 | Parameters.Add(new LookupParameter<ISymbolicExpressionTree>("SymbolicExpressionTree", "The symbolic expression tree for which moves should be generated."));
|
---|
109 | Parameters.Add(new LookupParameter<ReplaceBranchMove>("ReplaceBranchMove", "The moves that should be generated in subscopes."));
|
---|
110 | Parameters.Add(new ScopeParameter("CurrentScope", "The current scope where the moves should be added as subscopes."));
|
---|
111 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionGrammar>("Grammar"));
|
---|
112 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>("Interpreter"));
|
---|
113 | Parameters.Add(new LookupParameter<IRegressionProblemData>("ProblemData"));
|
---|
114 | Parameters.Add(new ValueParameter<IntValue>("ReplacementBranchesPoolSize", new IntValue(10000)));
|
---|
115 | Parameters.Add(new ValueParameter<IntValue>("MaxReplacementBranchLength", new IntValue(8)));
|
---|
116 | Parameters.Add(new ValueParameter<IntValue>("MaxReplacementBranchDepth", new IntValue(4)));
|
---|
117 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeDepth"));
|
---|
118 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeLength"));
|
---|
119 | Parameters.Add(new ValueLookupParameter<IntValue>("NeighbourhoodSize", new IntValue(5)));
|
---|
120 | Parameters.Add(new ValueLookupParameter<BoolValue>("Semantic", new BoolValue()));
|
---|
121 | }
|
---|
122 |
|
---|
123 |
|
---|
124 | [StorableHook(HookType.AfterDeserialization)]
|
---|
125 | private void AfterDeserialization() {
|
---|
126 | if (!Parameters.ContainsKey("MaximumSymbolicExpressionTreeDepth")) {
|
---|
127 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeDepth"));
|
---|
128 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumSymbolicExpressionTreeLength"));
|
---|
129 | }
|
---|
130 | if (!Parameters.ContainsKey("NeighbourhoodSize")) {
|
---|
131 | Parameters.Add(new ValueLookupParameter<IntValue>("NeighbourhoodSize", new IntValue(5)));
|
---|
132 | }
|
---|
133 |
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
138 | return new ReplaceBranchMultiMoveGenerator(this, cloner);
|
---|
139 | }
|
---|
140 |
|
---|
141 | public override void ClearState() {
|
---|
142 | fragments = null;
|
---|
143 | fragmentOutput = null;
|
---|
144 | base.ClearState();
|
---|
145 | }
|
---|
146 | public override void InitializeState() {
|
---|
147 | fragments = null;
|
---|
148 | fragmentOutput = null;
|
---|
149 | base.InitializeState();
|
---|
150 | }
|
---|
151 |
|
---|
152 | public override IOperation Apply() {
|
---|
153 | var random = RandomParameter.ActualValue;
|
---|
154 | if (fragments == null || fragmentOutput == null) {
|
---|
155 | InitializeOperator();
|
---|
156 | }
|
---|
157 |
|
---|
158 | var tree = SymbolicExpressionTreeParameter.ActualValue;
|
---|
159 |
|
---|
160 | string moveParameterName = ReplaceBranchMoveParameter.ActualName;
|
---|
161 | var moveScopes = new List<Scope>();
|
---|
162 | int n = SampleSizeParameter.ActualValue.Value;
|
---|
163 |
|
---|
164 | var moves = GenerateMoves(tree, random, n);
|
---|
165 |
|
---|
166 | foreach (var m in moves) {
|
---|
167 | var moveScope = new Scope(moveScopes.Count.ToString());
|
---|
168 | moveScope.Variables.Add(new HeuristicLab.Core.Variable(moveParameterName, m));
|
---|
169 | moveScopes.Add(moveScope);
|
---|
170 | }
|
---|
171 | CurrentScopeParameter.ActualValue.SubScopes.AddRange(moveScopes);
|
---|
172 | return base.Apply();
|
---|
173 | }
|
---|
174 |
|
---|
175 | public IEnumerable<ReplaceBranchMove> GenerateMoves(ISymbolicExpressionTree tree, IRandom random, int n) {
|
---|
176 | int maxDepth = MaximumSymbolicExpressionTreeDepthParameter.ActualValue.Value;
|
---|
177 | int maxLength = MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value;
|
---|
178 | var possibleInternalChildren = (from parent in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()
|
---|
179 | from i in Enumerable.Range(0, parent.SubtreeCount)
|
---|
180 | let currentChild = parent.GetSubtree(i)
|
---|
181 | where currentChild.SubtreeCount > 0
|
---|
182 | where tree.Root.GetBranchLevel(currentChild) <= maxDepth + 2
|
---|
183 | where tree.Length - currentChild.GetLength() < maxLength
|
---|
184 | select new CutPoint(parent, i)).ToArray();
|
---|
185 |
|
---|
186 | var possibleLeaveChildren = (from parent in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()
|
---|
187 | from i in Enumerable.Range(0, parent.SubtreeCount)
|
---|
188 | let currentChild = parent.GetSubtree(i)
|
---|
189 | where currentChild.SubtreeCount == 0
|
---|
190 | where tree.Root.GetBranchLevel(currentChild) <= maxDepth + 2
|
---|
191 | where tree.Length - 1 < maxLength
|
---|
192 | select new CutPoint(parent, i)).ToArray();
|
---|
193 |
|
---|
194 |
|
---|
195 | var root = (new ProgramRootSymbol()).CreateTreeNode();
|
---|
196 | var start = (new StartSymbol()).CreateTreeNode();
|
---|
197 | root.AddSubtree(start);
|
---|
198 | var t = new SymbolicExpressionTree(root);
|
---|
199 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
200 | var ds = ProblemDataParameter.ActualValue.Dataset;
|
---|
201 | var rows = ProblemDataParameter.ActualValue.TrainingIndices;
|
---|
202 |
|
---|
203 | bool semantic = SemanticParameter.ActualValue.Value;
|
---|
204 |
|
---|
205 | // select a random replacement point
|
---|
206 | CutPoint[] possibleChildren;
|
---|
207 | if (random.NextDouble() < 0.9)
|
---|
208 | possibleChildren = possibleInternalChildren;
|
---|
209 | else possibleChildren = possibleLeaveChildren;
|
---|
210 | var selected = possibleChildren[random.Next(possibleChildren.Length)];
|
---|
211 | // evaluate
|
---|
212 | start.AddSubtree(selected.Parent.GetSubtree(selected.ChildIndex));
|
---|
213 | var output = interpreter.GetSymbolicExpressionTreeValues(t, ds, rows).ToArray();
|
---|
214 | start.RemoveSubtree(0);
|
---|
215 |
|
---|
216 | if (semantic) {
|
---|
217 | return FindMostSimilarFragments(tree, maxLength, maxDepth, selected, random, n, output);
|
---|
218 | } else {
|
---|
219 | return FindRandomFragments(tree, maxLength, maxDepth, selected, random, n, output);
|
---|
220 | }
|
---|
221 | }
|
---|
222 |
|
---|
223 | private IEnumerable<ReplaceBranchMove> FindRandomFragments(ISymbolicExpressionTree tree, int maxLength, int maxDepth, CutPoint selected,
|
---|
224 | IRandom random, int maxNeighbours, double[] output) {
|
---|
225 | var selectedFragments = new List<Tuple<ISymbolicExpressionTree, double[]>>(maxNeighbours);
|
---|
226 | int treeLength = tree.Length;
|
---|
227 | int removedFragementLength = selected.Parent.GetSubtree(selected.ChildIndex).GetLength();
|
---|
228 | int parentBranchLevel = tree.Root.GetBranchLevel(selected.Parent);
|
---|
229 | int iterations = 0;
|
---|
230 | int maxIterations = maxNeighbours + 100;
|
---|
231 | // select random fragments
|
---|
232 | while (selectedFragments.Count < maxNeighbours && iterations++ < maxIterations) {
|
---|
233 | int r = random.Next(fragments.Count);
|
---|
234 | var selectedFragment = fragments[r];
|
---|
235 | var selectedFragmentOutput = fragmentOutput[r];
|
---|
236 | // if the branch is allowed in the selected point
|
---|
237 | if (treeLength - removedFragementLength + selectedFragment.Length <= maxLength + 4 &&
|
---|
238 | parentBranchLevel + selectedFragment.Depth - 2 <= maxDepth + 2 &&
|
---|
239 | tree.Root.Grammar.IsAllowedChildSymbol(selected.Parent.Symbol, selectedFragment.Root.GetSubtree(0).GetSubtree(0).Symbol, selected.ChildIndex)) {
|
---|
240 | selectedFragments.Add(Tuple.Create(selectedFragment, selectedFragmentOutput));
|
---|
241 | }
|
---|
242 | }
|
---|
243 | // yield moves (we need to add linear scaling parameters for the inserted tree)
|
---|
244 | return selectedFragments
|
---|
245 | .Select(pair => new ReplaceBranchMove(tree, selected.Parent, selected.ChildIndex, pair.Item1.Root.GetSubtree(0).GetSubtree(0), output, pair.Item2));
|
---|
246 | }
|
---|
247 |
|
---|
248 | private IEnumerable<ReplaceBranchMove> FindMostSimilarFragments(ISymbolicExpressionTree tree, int maxLength, int maxDepth, CutPoint selected,
|
---|
249 | IRandom random, int maxNeighbours, double[] output) {
|
---|
250 | var bestTrees = new SortedList<double, List<Tuple<ISymbolicExpressionTree, double[]>>>(fragments.Count);
|
---|
251 | int treeLength = tree.Length;
|
---|
252 | int removedFragementLength = selected.Parent.GetSubtree(selected.ChildIndex).GetLength();
|
---|
253 | int parentBranchLevel = tree.Root.GetBranchLevel(selected.Parent);
|
---|
254 | // iterate over the whole pool of branches for replacement
|
---|
255 | for (int i = 0; i < fragments.Count; i++) {
|
---|
256 | // if the branch is allowed in the selected point
|
---|
257 | if (treeLength - removedFragementLength + fragments[i].Length <= maxLength + 4 &&
|
---|
258 | parentBranchLevel + fragments[i].Depth - 2 <= maxDepth + 2 &&
|
---|
259 | tree.Root.Grammar.IsAllowedChildSymbol(selected.Parent.Symbol, fragments[i].Root.GetSubtree(0).GetSubtree(0).Symbol, selected.ChildIndex)) {
|
---|
260 | OnlineCalculatorError error;
|
---|
261 | // calculate the similarity
|
---|
262 | double similarity = OnlinePearsonsRSquaredCalculator.Calculate(output, fragmentOutput[i], out error);
|
---|
263 | similarity = Math.Round(similarity, 5);
|
---|
264 | if (error != OnlineCalculatorError.None) similarity = 0.0;
|
---|
265 | // if we found a new bestSimilarity then keep the replacement branch in a sorted list (keep maximally the n best for this replacement point)
|
---|
266 | if (similarity < 1 && ((bestTrees.Count < maxNeighbours) || similarity > bestTrees.ElementAt(0).Key)) {
|
---|
267 | if (!bestTrees.ContainsKey(similarity)) {
|
---|
268 | var l = new List<Tuple<ISymbolicExpressionTree, double[]>>();
|
---|
269 | bestTrees.Add(similarity, l);
|
---|
270 | }
|
---|
271 | bestTrees[similarity].Add(Tuple.Create(fragments[i], fragmentOutput[i]));
|
---|
272 | if (bestTrees.Count > maxNeighbours) bestTrees.RemoveAt(0);
|
---|
273 | }
|
---|
274 | }
|
---|
275 | }
|
---|
276 | int c = 0;
|
---|
277 | // yield moves (we need to add linear scaling parameters for the inserted tree)
|
---|
278 | while (c < maxNeighbours) {
|
---|
279 | var l = bestTrees.ElementAt(c % bestTrees.Count).Value;
|
---|
280 | var pair = l[random.Next(l.Count)];
|
---|
281 | yield return
|
---|
282 | new ReplaceBranchMove(tree, selected.Parent, selected.ChildIndex, pair.Item1.Root.GetSubtree(0).GetSubtree(0),
|
---|
283 | output, pair.Item2);
|
---|
284 | c++;
|
---|
285 | }
|
---|
286 | }
|
---|
287 |
|
---|
288 | private void InitializeOperator() {
|
---|
289 | // init locally and set only at the end in case of exceptions
|
---|
290 | var trees = new List<ISymbolicExpressionTree>();
|
---|
291 | var treeOutput = new List<double[]>();
|
---|
292 | var random = RandomParameter.ActualValue;
|
---|
293 | var g = SymbolicExpressionTreeGrammarParameter.ActualValue;
|
---|
294 | var constSym = g.Symbols.Single(s => s is Constant);
|
---|
295 | // temporarily disable constants
|
---|
296 | double oldConstFreq = constSym.InitialFrequency;
|
---|
297 | constSym.InitialFrequency = 0.0;
|
---|
298 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
299 | var ds = ProblemDataParameter.ActualValue.Dataset;
|
---|
300 | var rows = ProblemDataParameter.ActualValue.TrainingIndices;
|
---|
301 | // create pool of random branches for replacement (no constants)
|
---|
302 | // and evaluate the output
|
---|
303 | // only keep fragments if the output does not contain invalid values
|
---|
304 | var n = ReplacementBranchesPoolSize.Value.Value;
|
---|
305 | while (trees.Count < n) {
|
---|
306 | var t = ProbabilisticTreeCreator.Create(random, g, MaxReplacementBranchLength.Value.Value, MaxReplacementBranchDepth.Value.Value);
|
---|
307 | var output = interpreter.GetSymbolicExpressionTreeValues(t, ds, rows);
|
---|
308 | if (!output.Any(x => double.IsInfinity(x) || double.IsNaN(x))) {
|
---|
309 | trees.Add(t);
|
---|
310 | treeOutput.Add(output.ToArray());
|
---|
311 | }
|
---|
312 | }
|
---|
313 | // enable constants again
|
---|
314 | constSym.InitialFrequency = oldConstFreq;
|
---|
315 | this.fragments = trees;
|
---|
316 | this.fragmentOutput = treeOutput;
|
---|
317 | }
|
---|
318 | }
|
---|
319 | }
|
---|