1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 | #endregion
|
---|
22 |
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | [StorableClass]
|
---|
32 | [Item("RegressionTreeModel", "Represents a decision tree for regression.")]
|
---|
33 | public class RegressionTreeModel : NamedItem, IRegressionModel {
|
---|
34 |
|
---|
35 | // trees are represented as a flat array
|
---|
36 | public struct TreeNode {
|
---|
37 | public readonly static string NO_VARIABLE = string.Empty;
|
---|
38 | public string varName; // name of the variable for splitting or -1 if terminal node
|
---|
39 | public double val; // threshold
|
---|
40 | public int leftIdx;
|
---|
41 | public int rightIdx;
|
---|
42 |
|
---|
43 | public override int GetHashCode() {
|
---|
44 | return leftIdx ^ rightIdx ^ val.GetHashCode();
|
---|
45 | }
|
---|
46 | }
|
---|
47 |
|
---|
48 | [Storable]
|
---|
49 | public readonly TreeNode[] tree;
|
---|
50 |
|
---|
51 | [StorableConstructor]
|
---|
52 | private RegressionTreeModel(bool serializing) : base(serializing) { }
|
---|
53 | // cloning ctor
|
---|
54 | public RegressionTreeModel(RegressionTreeModel original, Cloner cloner)
|
---|
55 | : base(original, cloner) {
|
---|
56 | this.tree = original.tree; // shallow clone, tree must be readonly
|
---|
57 | }
|
---|
58 |
|
---|
59 | public RegressionTreeModel(TreeNode[] tree)
|
---|
60 | : base("RegressionTreeModel", "Represents a decision tree for regression.") {
|
---|
61 | this.tree = tree;
|
---|
62 | }
|
---|
63 |
|
---|
64 | private static double GetPredictionForRow(TreeNode[] t, int nodeIdx, IDataset ds, int row) {
|
---|
65 | var node = t[nodeIdx];
|
---|
66 | if (node.varName == TreeNode.NO_VARIABLE)
|
---|
67 | return node.val;
|
---|
68 | else if (ds.GetDoubleValue(node.varName, row) <= node.val)
|
---|
69 | return GetPredictionForRow(t, node.leftIdx, ds, row);
|
---|
70 | else
|
---|
71 | return GetPredictionForRow(t, node.rightIdx, ds, row);
|
---|
72 | }
|
---|
73 |
|
---|
74 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
75 | return new RegressionTreeModel(this, cloner);
|
---|
76 | }
|
---|
77 |
|
---|
78 | public IEnumerable<double> GetEstimatedValues(IDataset ds, IEnumerable<int> rows) {
|
---|
79 | return rows.Select(r => GetPredictionForRow(tree, 0, ds, r));
|
---|
80 | }
|
---|
81 |
|
---|
82 | public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
83 | return new RegressionSolution(this, new RegressionProblemData(problemData));
|
---|
84 | }
|
---|
85 | }
|
---|
86 |
|
---|
87 | }
|
---|