[7128] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
| 32 |
|
---|
| 33 | [Item("QAPPermutationFitnessDistanceCorrelationAnalyzer", "An operator that analyzes the correlation between fitness and distance to the best know solution for permutation encoding")]
|
---|
| 34 | [StorableClass]
|
---|
| 35 | public class QAPPermutationFitnessDistanceCorrelationAnalyzer : FitnessDistanceCorrelationAnalyzer, IPermutationOperator {
|
---|
| 36 |
|
---|
| 37 | #region Parameters
|
---|
| 38 | public ScopeTreeLookupParameter<Permutation> PermutationParameter {
|
---|
| 39 | get { return (ScopeTreeLookupParameter<Permutation>)Parameters["Permutation"]; }
|
---|
| 40 | }
|
---|
| 41 | public LookupParameter<Permutation> BestKnownSolution {
|
---|
| 42 | get { return (LookupParameter<Permutation>)Parameters["BestKnownSolution"]; }
|
---|
| 43 | }
|
---|
| 44 | public ILookupParameter<DoubleMatrix> WeightsParameter {
|
---|
| 45 | get { return (ILookupParameter<DoubleMatrix>)Parameters["Weights"]; }
|
---|
| 46 | }
|
---|
| 47 | public ILookupParameter<DoubleMatrix> DistancesParameter {
|
---|
| 48 | get { return (ILookupParameter<DoubleMatrix>)Parameters["Distances"]; }
|
---|
| 49 | }
|
---|
| 50 | #endregion
|
---|
| 51 |
|
---|
| 52 | [StorableConstructor]
|
---|
| 53 | protected QAPPermutationFitnessDistanceCorrelationAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 54 | protected QAPPermutationFitnessDistanceCorrelationAnalyzer(QAPPermutationFitnessDistanceCorrelationAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 55 |
|
---|
| 56 | public QAPPermutationFitnessDistanceCorrelationAnalyzer() {
|
---|
| 57 | Parameters.Add(new ScopeTreeLookupParameter<Permutation>("Permutation", "The permutation encoded solution"));
|
---|
| 58 | Parameters.Add(new LookupParameter<Permutation>("BestKnownSolution", "The best known solution"));
|
---|
| 59 | Parameters.Add(new LookupParameter<DoubleMatrix>("Weights", "The weights matrix."));
|
---|
| 60 | Parameters.Add(new LookupParameter<DoubleMatrix>("Distances", "The distances matrix."));
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 64 | return new QAPPermutationFitnessDistanceCorrelationAnalyzer(this, cloner);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public static double Distance(Permutation a, Permutation b, DoubleMatrix weights, DoubleMatrix distances) {
|
---|
| 68 | Dictionary<string, int> alleles = new Dictionary<string, int>(a.Length * a.Length);
|
---|
| 69 | int distance = 0;
|
---|
| 70 | for (int x = 0; x < a.Length; x++) {
|
---|
| 71 | for (int y = 0; y < a.Length; y++) {
|
---|
| 72 | string alleleA = weights[x, y].ToString() + ">" + distances[a[x], a[y]].ToString();
|
---|
| 73 | string alleleB = weights[x, y].ToString() + ">" + distances[b[x], b[y]].ToString();
|
---|
| 74 | if (alleleA == alleleB) continue;
|
---|
| 75 |
|
---|
| 76 | int countA = 1, countB = -1;
|
---|
| 77 | if (alleles.ContainsKey(alleleA)) countA += alleles[alleleA];
|
---|
| 78 | if (alleles.ContainsKey(alleleB)) countB += alleles[alleleB];
|
---|
| 79 |
|
---|
| 80 | if (countA <= 0) distance--; // we've found in A an allele that was present in B
|
---|
| 81 | else distance++; // we've found in A a new allele
|
---|
| 82 | alleles[alleleA] = countA;
|
---|
| 83 |
|
---|
| 84 | if (countB >= 0) distance--; // we've found in B an allele that was present in A
|
---|
| 85 | else distance++; // we've found in B a new allele
|
---|
| 86 | alleles[alleleB] = countB;
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 | return distance;
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | protected override IEnumerable<double> GetDistancesToBestKnownSolution() {
|
---|
| 93 | if (PermutationParameter.ActualName == null)
|
---|
| 94 | return new double[0];
|
---|
| 95 | Permutation bestKnownValue = BestKnownSolution.ActualValue;
|
---|
| 96 | if (bestKnownValue == null)
|
---|
| 97 | return PermutationParameter.ActualValue.Select(v => 0d);
|
---|
| 98 | return PermutationParameter.ActualValue.Select(v => Distance(v, bestKnownValue, WeightsParameter.ActualValue, DistancesParameter.ActualValue));
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 | } |
---|