1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
32 |
|
---|
33 | [Item("QAPPermutationFitnessDistanceCorrelationAnalyzer", "An operator that analyzes the correlation between fitness and distance to the best know solution for permutation encoding")]
|
---|
34 | [StorableClass]
|
---|
35 | public class QAPPermutationFitnessDistanceCorrelationAnalyzer : FitnessDistanceCorrelationAnalyzer, IPermutationOperator {
|
---|
36 |
|
---|
37 | #region Parameters
|
---|
38 | public ScopeTreeLookupParameter<Permutation> PermutationParameter {
|
---|
39 | get { return (ScopeTreeLookupParameter<Permutation>)Parameters["Permutation"]; }
|
---|
40 | }
|
---|
41 | public LookupParameter<Permutation> BestKnownSolution {
|
---|
42 | get { return (LookupParameter<Permutation>)Parameters["BestKnownSolution"]; }
|
---|
43 | }
|
---|
44 | public ILookupParameter<DoubleMatrix> WeightsParameter {
|
---|
45 | get { return (ILookupParameter<DoubleMatrix>)Parameters["Weights"]; }
|
---|
46 | }
|
---|
47 | public ILookupParameter<DoubleMatrix> DistancesParameter {
|
---|
48 | get { return (ILookupParameter<DoubleMatrix>)Parameters["Distances"]; }
|
---|
49 | }
|
---|
50 | #endregion
|
---|
51 |
|
---|
52 | [StorableConstructor]
|
---|
53 | protected QAPPermutationFitnessDistanceCorrelationAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
54 | protected QAPPermutationFitnessDistanceCorrelationAnalyzer(QAPPermutationFitnessDistanceCorrelationAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
55 |
|
---|
56 | public QAPPermutationFitnessDistanceCorrelationAnalyzer() {
|
---|
57 | Parameters.Add(new ScopeTreeLookupParameter<Permutation>("Permutation", "The permutation encoded solution"));
|
---|
58 | Parameters.Add(new LookupParameter<Permutation>("BestKnownSolution", "The best known solution"));
|
---|
59 | Parameters.Add(new LookupParameter<DoubleMatrix>("Weights", "The weights matrix."));
|
---|
60 | Parameters.Add(new LookupParameter<DoubleMatrix>("Distances", "The distances matrix."));
|
---|
61 | }
|
---|
62 |
|
---|
63 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
64 | return new QAPPermutationFitnessDistanceCorrelationAnalyzer(this, cloner);
|
---|
65 | }
|
---|
66 |
|
---|
67 | public static double Distance(Permutation a, Permutation b, DoubleMatrix weights, DoubleMatrix distances) {
|
---|
68 | Dictionary<string, int> alleles = new Dictionary<string, int>(a.Length * a.Length);
|
---|
69 | int distance = 0;
|
---|
70 | for (int x = 0; x < a.Length; x++) {
|
---|
71 | for (int y = 0; y < a.Length; y++) {
|
---|
72 | string alleleA = weights[x, y].ToString() + ">" + distances[a[x], a[y]].ToString();
|
---|
73 | string alleleB = weights[x, y].ToString() + ">" + distances[b[x], b[y]].ToString();
|
---|
74 | if (alleleA == alleleB) continue;
|
---|
75 |
|
---|
76 | int countA = 1, countB = -1;
|
---|
77 | if (alleles.ContainsKey(alleleA)) countA += alleles[alleleA];
|
---|
78 | if (alleles.ContainsKey(alleleB)) countB += alleles[alleleB];
|
---|
79 |
|
---|
80 | if (countA <= 0) distance--; // we've found in A an allele that was present in B
|
---|
81 | else distance++; // we've found in A a new allele
|
---|
82 | alleles[alleleA] = countA;
|
---|
83 |
|
---|
84 | if (countB >= 0) distance--; // we've found in B an allele that was present in A
|
---|
85 | else distance++; // we've found in B a new allele
|
---|
86 | alleles[alleleB] = countB;
|
---|
87 | }
|
---|
88 | }
|
---|
89 | return distance;
|
---|
90 | }
|
---|
91 |
|
---|
92 | protected override IEnumerable<double> GetDistancesToBestKnownSolution() {
|
---|
93 | if (PermutationParameter.ActualName == null)
|
---|
94 | return new double[0];
|
---|
95 | Permutation bestKnownValue = BestKnownSolution.ActualValue;
|
---|
96 | if (bestKnownValue == null)
|
---|
97 | return PermutationParameter.ActualValue.Select(v => 0d);
|
---|
98 | return PermutationParameter.ActualValue.Select(v => Distance(v, bestKnownValue, WeightsParameter.ActualValue, DistancesParameter.ActualValue));
|
---|
99 | }
|
---|
100 | }
|
---|
101 | } |
---|