[15064] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
[15338] | 24 | using System.Threading;
|
---|
[15064] | 25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Operators;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Algorithms.EGO {
|
---|
| 36 | [Item("ModelBuilder", "Builds a model from a dataset and a given RegressionAlgorithm")]
|
---|
| 37 | [StorableClass]
|
---|
[15338] | 38 | public class ModelBuilder : InstrumentedOperator, IStochasticOperator, ICancellableOperator {
|
---|
[15064] | 39 | public override bool CanChangeName => true;
|
---|
[15338] | 40 | public CancellationToken Cancellation { get; set; }
|
---|
[15064] | 41 |
|
---|
[15338] | 42 | #region Parameter properties
|
---|
[15064] | 43 | public ILookupParameter<IDataAnalysisAlgorithm<IRegressionProblem>> RegressionAlgorithmParameter => (ILookupParameter<IDataAnalysisAlgorithm<IRegressionProblem>>)Parameters["RegressionAlgorithm"];
|
---|
| 44 | public ILookupParameter<IRegressionSolution> ModelParameter => (ILookupParameter<IRegressionSolution>)Parameters["Model"];
|
---|
| 45 | public ILookupParameter<ModifiableDataset> DatasetParameter => (ILookupParameter<ModifiableDataset>)Parameters["Dataset"];
|
---|
| 46 | public ILookupParameter<IRandom> RandomParameter => (ILookupParameter<IRandom>)Parameters["Random"];
|
---|
| 47 | public ILookupParameter<IntValue> MaxModelSizeParameter => (ILookupParameter<IntValue>)Parameters["Maximal Model Size"];
|
---|
| 48 | public ILookupParameter<DoubleMatrix> InfillBoundsParameter => (ILookupParameter<DoubleMatrix>)Parameters["InfillBounds"];
|
---|
[15338] | 49 | #endregion
|
---|
[15064] | 50 |
|
---|
| 51 | [StorableConstructor]
|
---|
| 52 | protected ModelBuilder(bool deserializing) : base(deserializing) { }
|
---|
| 53 | protected ModelBuilder(ModelBuilder original, Cloner cloner) : base(original, cloner) { }
|
---|
| 54 | public ModelBuilder() {
|
---|
| 55 | Parameters.Add(new LookupParameter<IDataAnalysisAlgorithm<IRegressionProblem>>("RegressionAlgorithm", "The algorithm used to build a model") { Hidden = true });
|
---|
| 56 | Parameters.Add(new LookupParameter<IRegressionSolution>("Model", "The resulting model") { Hidden = true });
|
---|
| 57 | Parameters.Add(new LookupParameter<ModifiableDataset>("Dataset", "The Dataset from which the model is created") { Hidden = true });
|
---|
| 58 | Parameters.Add(new LookupParameter<IRandom>("Random", "A random number generator") { Hidden = true });
|
---|
| 59 | Parameters.Add(new LookupParameter<IntValue>("Maximal Model Size", "The maximum number of sample points used to build the model (Set -1 for infinite size") { Hidden = true });
|
---|
| 60 | Parameters.Add(new LookupParameter<DoubleMatrix>("InfillBounds", "The bounds applied for infill solving") { Hidden = true });
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 64 | return new ModelBuilder(this, cloner);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public override IOperation InstrumentedApply() {
|
---|
| 68 | var regressionAlg = RegressionAlgorithmParameter.ActualValue;
|
---|
| 69 | IDataset data = DatasetParameter.ActualValue;
|
---|
| 70 | var random = RandomParameter.ActualValue;
|
---|
| 71 | var oldModel = ModelParameter.ActualValue;
|
---|
| 72 | var max = MaxModelSizeParameter.ActualValue.Value;
|
---|
| 73 | if (data.Rows > max && max > 0) {
|
---|
| 74 | data = SelectBestSamples(data, max);
|
---|
| 75 | InfillBoundsParameter.ActualValue = GetBounds(data);
|
---|
| 76 | }
|
---|
| 77 | ModelParameter.ActualValue = BuildModel(random, regressionAlg, data, oldModel);
|
---|
| 78 | return base.InstrumentedApply();
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | private DoubleMatrix GetBounds(IDataset data) {
|
---|
| 82 | var res = new DoubleMatrix(data.Columns - 1, 2);
|
---|
| 83 | var names = data.DoubleVariables.ToArray();
|
---|
| 84 | for (var i = 0; i < names.Length - 1; i++) {
|
---|
| 85 | res[i, 0] = data.GetDoubleValues(names[i]).Min();
|
---|
| 86 | res[i, 1] = data.GetDoubleValues(names[i]).Max();
|
---|
| 87 | }
|
---|
| 88 | return res;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | private static Dataset SelectBestSamples(IDataset data, int max) {
|
---|
| 92 | var bestSampleIndices = data.GetDoubleValues("output").Select((d, i) => Tuple.Create(d, i)).OrderBy(x => x.Item1).Take(max).Select(x => x.Item2).ToArray();
|
---|
| 93 | return new Dataset(data.VariableNames, data.VariableNames.Select(v => data.GetDoubleValues(v, bestSampleIndices).ToList()));
|
---|
| 94 | }
|
---|
| 95 |
|
---|
[15338] | 96 | private IRegressionSolution BuildModel(IRandom random, IDataAnalysisAlgorithm<IRegressionProblem> regressionAlgorithm, IDataset dataset, IRegressionSolution oldSolution) {
|
---|
[15064] | 97 | //var dataset = EgoUtilities.GetDataSet(dataSamples, RemoveDuplicates);
|
---|
| 98 | var problemdata = new RegressionProblemData(dataset, dataset.VariableNames.Where(x => !x.Equals("output")), "output");
|
---|
| 99 | problemdata.TrainingPartition.Start = 0;
|
---|
| 100 | problemdata.TrainingPartition.End = dataset.Rows;
|
---|
| 101 | problemdata.TestPartition.Start = dataset.Rows;
|
---|
| 102 | problemdata.TestPartition.End = dataset.Rows;
|
---|
| 103 |
|
---|
| 104 | //train
|
---|
| 105 | var problem = (RegressionProblem)regressionAlgorithm.Problem;
|
---|
| 106 | problem.ProblemDataParameter.Value = problemdata;
|
---|
| 107 | var i = 0;
|
---|
| 108 | IRegressionSolution solution = null;
|
---|
| 109 |
|
---|
| 110 | while (solution == null && i++ < 100) {
|
---|
[15338] | 111 | var results = EgoUtilities.SyncRunSubAlgorithm(regressionAlgorithm, random.Next(int.MaxValue), Cancellation);
|
---|
[15064] | 112 | solution = results.Select(x => x.Value).OfType<IRegressionSolution>().SingleOrDefault();
|
---|
| 113 | }
|
---|
| 114 |
|
---|
[15338] | 115 | if (regressionAlgorithm is GaussianProcessRegression && oldSolution != null)
|
---|
| 116 | solution = SanitizeGaussianProcess(oldSolution as GaussianProcessRegressionSolution, solution as GaussianProcessRegressionSolution, Cancellation);
|
---|
[15064] | 117 |
|
---|
[15343] | 118 | //if (regressionAlgorithm is M5RegressionTree && oldSolution != null) solution = SanitizeM5Regression(oldSolution.Model as M5Model, solution, random, Cancellation);
|
---|
[15338] | 119 |
|
---|
| 120 |
|
---|
[15064] | 121 | regressionAlgorithm.Runs.Clear();
|
---|
| 122 | return solution;
|
---|
| 123 |
|
---|
| 124 | }
|
---|
[15338] | 125 |
|
---|
[15343] | 126 | //private static IRegressionSolution SanitizeM5Regression(M5Model oldmodel, IRegressionSolution newSolution, IRandom random, CancellationToken cancellation) {
|
---|
| 127 | // var problemdata = newSolution.ProblemData;
|
---|
| 128 | // oldmodel.UpdateLeafModels(problemdata, problemdata.AllIndices, random, cancellation);
|
---|
| 129 | // var oldSolution = oldmodel.CreateRegressionSolution(problemdata);
|
---|
| 130 | // var magicDecision = newSolution.TrainingRSquared < oldSolution.TrainingRSquared - 0.05;
|
---|
| 131 | // return magicDecision ? newSolution : oldmodel.CreateRegressionSolution(problemdata);
|
---|
| 132 | //}
|
---|
[15338] | 133 |
|
---|
| 134 | //try creating a model with old hyperparameters and new dataset;
|
---|
| 135 | private static IRegressionSolution SanitizeGaussianProcess(GaussianProcessRegressionSolution oldmodel, GaussianProcessRegressionSolution newSolution, CancellationToken cancellation) {
|
---|
| 136 | var problemdata = newSolution.ProblemData;
|
---|
| 137 | var mean = (IMeanFunction)oldmodel.Model.MeanFunction.Clone();
|
---|
| 138 | var cov = (ICovarianceFunction)oldmodel.Model.CovarianceFunction.Clone();
|
---|
| 139 | try {
|
---|
| 140 | var model = new GaussianProcessModel(problemdata.Dataset, problemdata.TargetVariable, problemdata.AllowedInputVariables, problemdata.TrainingIndices, new[] { 0.0 }, mean, cov);
|
---|
| 141 | cancellation.ThrowIfCancellationRequested();
|
---|
| 142 | model.FixParameters();
|
---|
| 143 | var sol = new GaussianProcessRegressionSolution(model, problemdata);
|
---|
| 144 | if (newSolution.TrainingMeanSquaredError > sol.TrainingMeanSquaredError) {
|
---|
| 145 | newSolution = sol;
|
---|
| 146 | }
|
---|
[15343] | 147 | }
|
---|
| 148 | catch (ArgumentException) { }
|
---|
[15338] | 149 | return newSolution;
|
---|
| 150 | }
|
---|
| 151 |
|
---|
[15064] | 152 | }
|
---|
| 153 | }
|
---|