1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Threading;
|
---|
25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
34 | using HeuristicLab.Problems.SurrogateProblem;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.EGO {
|
---|
37 | /// <summary>
|
---|
38 | /// A base class for operators that manipulate real-valued vectors.
|
---|
39 | /// </summary>
|
---|
40 | [Item("ModelBuilder", "Builds a model from a dataset and a given RegressionAlgorithm")]
|
---|
41 | [StorableClass]
|
---|
42 | public class ModelBuilder : InstrumentedOperator, IStochasticOperator, ICancellableOperator {
|
---|
43 | public override bool CanChangeName => true;
|
---|
44 | public CancellationToken Cancellation { get; set; }
|
---|
45 |
|
---|
46 | #region Parameter properties
|
---|
47 | public ILookupParameter<IDataAnalysisAlgorithm<IRegressionProblem>> RegressionAlgorithmParameter => (ILookupParameter<IDataAnalysisAlgorithm<IRegressionProblem>>)Parameters["RegressionAlgorithm"];
|
---|
48 | public ILookupParameter<IRegressionSolution> ModelParameter => (ILookupParameter<IRegressionSolution>)Parameters["Model"];
|
---|
49 | public ILookupParameter<ModifiableDataset> DatasetParameter => (ILookupParameter<ModifiableDataset>)Parameters["Dataset"];
|
---|
50 | public ILookupParameter<IRandom> RandomParameter => (ILookupParameter<IRandom>)Parameters["Random"];
|
---|
51 | public ILookupParameter<IntValue> MaxModelSizeParameter => (ILookupParameter<IntValue>)Parameters["Maximal Model Size"];
|
---|
52 | public ILookupParameter<DoubleMatrix> InfillBoundsParameter => (ILookupParameter<DoubleMatrix>)Parameters["InfillBounds"];
|
---|
53 | #endregion
|
---|
54 |
|
---|
55 | [StorableConstructor]
|
---|
56 | protected ModelBuilder(bool deserializing) : base(deserializing) { }
|
---|
57 | protected ModelBuilder(ModelBuilder original, Cloner cloner) : base(original, cloner) { }
|
---|
58 | public ModelBuilder() {
|
---|
59 | Parameters.Add(new LookupParameter<IDataAnalysisAlgorithm<IRegressionProblem>>("RegressionAlgorithm", "The algorithm used to build a model") { Hidden = true });
|
---|
60 | Parameters.Add(new LookupParameter<IRegressionSolution>("Model", "The resulting model") { Hidden = true });
|
---|
61 | Parameters.Add(new LookupParameter<ModifiableDataset>("Dataset", "The Dataset from which the model is created") { Hidden = true });
|
---|
62 | Parameters.Add(new LookupParameter<IRandom>("Random", "A random number generator") { Hidden = true });
|
---|
63 | Parameters.Add(new LookupParameter<IntValue>("Maximal Model Size", "The maximum number of sample points used to build the model (Set -1 for infinite size") { Hidden = true });
|
---|
64 | Parameters.Add(new LookupParameter<DoubleMatrix>("InfillBounds", "The bounds applied for infill solving") { Hidden = true });
|
---|
65 | }
|
---|
66 |
|
---|
67 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
68 | return new ModelBuilder(this, cloner);
|
---|
69 | }
|
---|
70 |
|
---|
71 | public override IOperation InstrumentedApply() {
|
---|
72 | var regressionAlg = RegressionAlgorithmParameter.ActualValue;
|
---|
73 | IDataset data = DatasetParameter.ActualValue;
|
---|
74 | var random = RandomParameter.ActualValue;
|
---|
75 | var oldModel = ModelParameter.ActualValue;
|
---|
76 | var max = MaxModelSizeParameter.ActualValue.Value;
|
---|
77 | if (data.Rows > max && max > 0) {
|
---|
78 | data = SelectBestSamples(data, max);
|
---|
79 | InfillBoundsParameter.ActualValue = GetBounds(data);
|
---|
80 | }
|
---|
81 | ModelParameter.ActualValue = BuildModel(random, regressionAlg, data, oldModel);
|
---|
82 | return base.InstrumentedApply();
|
---|
83 | }
|
---|
84 |
|
---|
85 | private DoubleMatrix GetBounds(IDataset data) {
|
---|
86 | var res = new DoubleMatrix(data.Columns - 1, 2);
|
---|
87 | var names = data.DoubleVariables.ToArray();
|
---|
88 | for (var i = 0; i < names.Length - 1; i++) {
|
---|
89 | res[i, 0] = data.GetDoubleValues(names[i]).Min();
|
---|
90 | res[i, 1] = data.GetDoubleValues(names[i]).Max();
|
---|
91 | }
|
---|
92 | return res;
|
---|
93 | }
|
---|
94 |
|
---|
95 | private static Dataset SelectBestSamples(IDataset data, int max) {
|
---|
96 | var bestSampleIndices = data.GetDoubleValues("output").Select((d, i) => Tuple.Create(d, i)).OrderBy(x => x.Item1).Take(max).Select(x => x.Item2).ToArray();
|
---|
97 | return new Dataset(data.VariableNames, data.VariableNames.Select(v => data.GetDoubleValues(v, bestSampleIndices).ToList()));
|
---|
98 | }
|
---|
99 |
|
---|
100 | private IRegressionSolution BuildModel(IRandom random, IDataAnalysisAlgorithm<IRegressionProblem> regressionAlgorithm, IDataset dataset, IRegressionSolution oldSolution) {
|
---|
101 | //var dataset = EgoUtilities.GetDataSet(dataSamples, RemoveDuplicates);
|
---|
102 | var problemdata = new RegressionProblemData(dataset, dataset.VariableNames.Where(x => !x.Equals("output")), "output");
|
---|
103 | problemdata.TrainingPartition.Start = 0;
|
---|
104 | problemdata.TrainingPartition.End = dataset.Rows;
|
---|
105 | problemdata.TestPartition.Start = dataset.Rows;
|
---|
106 | problemdata.TestPartition.End = dataset.Rows;
|
---|
107 |
|
---|
108 | //train
|
---|
109 | var problem = (RegressionProblem)regressionAlgorithm.Problem;
|
---|
110 | problem.ProblemDataParameter.Value = problemdata;
|
---|
111 | var i = 0;
|
---|
112 | IRegressionSolution solution = null;
|
---|
113 |
|
---|
114 | while (solution == null && i++ < 100) {
|
---|
115 | var results = EgoUtilities.SyncRunSubAlgorithm(regressionAlgorithm, random.Next(int.MaxValue), Cancellation);
|
---|
116 | solution = results.Select(x => x.Value).OfType<IRegressionSolution>().SingleOrDefault();
|
---|
117 | }
|
---|
118 |
|
---|
119 | if (regressionAlgorithm is GaussianProcessRegression && oldSolution != null)
|
---|
120 | solution = SanitizeGaussianProcess(oldSolution as GaussianProcessRegressionSolution, solution as GaussianProcessRegressionSolution, Cancellation);
|
---|
121 |
|
---|
122 | if (regressionAlgorithm is M5RegressionTree && oldSolution != null)
|
---|
123 | solution = SanitizeM5Regression(oldSolution.Model as M5Model, solution, random, Cancellation);
|
---|
124 |
|
---|
125 |
|
---|
126 | regressionAlgorithm.Runs.Clear();
|
---|
127 | return solution;
|
---|
128 |
|
---|
129 | }
|
---|
130 |
|
---|
131 | private static IRegressionSolution SanitizeM5Regression(M5Model oldmodel, IRegressionSolution newSolution, IRandom random, CancellationToken cancellation) {
|
---|
132 | var problemdata = newSolution.ProblemData;
|
---|
133 | oldmodel.UpdateLeafModels(problemdata, problemdata.AllIndices, random, cancellation);
|
---|
134 | var oldSolution = oldmodel.CreateRegressionSolution(problemdata);
|
---|
135 | var magicDecision = newSolution.TrainingRSquared < oldSolution.TrainingRSquared - 0.05;
|
---|
136 | return magicDecision ? newSolution : oldmodel.CreateRegressionSolution(problemdata);
|
---|
137 | }
|
---|
138 |
|
---|
139 | //try creating a model with old hyperparameters and new dataset;
|
---|
140 | private static IRegressionSolution SanitizeGaussianProcess(GaussianProcessRegressionSolution oldmodel, GaussianProcessRegressionSolution newSolution, CancellationToken cancellation) {
|
---|
141 | var problemdata = newSolution.ProblemData;
|
---|
142 | var mean = (IMeanFunction)oldmodel.Model.MeanFunction.Clone();
|
---|
143 | var cov = (ICovarianceFunction)oldmodel.Model.CovarianceFunction.Clone();
|
---|
144 | try {
|
---|
145 | var model = new GaussianProcessModel(problemdata.Dataset, problemdata.TargetVariable, problemdata.AllowedInputVariables, problemdata.TrainingIndices, new[] { 0.0 }, mean, cov);
|
---|
146 | cancellation.ThrowIfCancellationRequested();
|
---|
147 | model.FixParameters();
|
---|
148 | var sol = new GaussianProcessRegressionSolution(model, problemdata);
|
---|
149 | if (newSolution.TrainingMeanSquaredError > sol.TrainingMeanSquaredError) {
|
---|
150 | newSolution = sol;
|
---|
151 | }
|
---|
152 | } catch (ArgumentException) { }
|
---|
153 | return newSolution;
|
---|
154 | }
|
---|
155 |
|
---|
156 | }
|
---|
157 | }
|
---|