1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
34 | [Item("SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator", "Calculates the mean and the variance of the squared errors of a linearly scaled symbolic regression solution.")]
|
---|
35 | [StorableClass]
|
---|
36 | public sealed class SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator : SymbolicRegressionMeanSquaredErrorEvaluator {
|
---|
37 | private const string QualityVarianceParameterName = "QualityVariance";
|
---|
38 | private const string QualitySamplesParameterName = "QualitySamples";
|
---|
39 | private const string DecompositionBiasParameterName = "QualityDecompositionBias";
|
---|
40 | private const string DecompositionVarianceParameterName = "QualityDecompositionVariance";
|
---|
41 | private const string DecompositionCovarianceParameterName = "QualityDecompositionCovariance";
|
---|
42 | private const string ApplyScalingParameterName = "ApplyScaling";
|
---|
43 |
|
---|
44 | #region parameter properties
|
---|
45 | public IValueLookupParameter<BoolValue> ApplyScalingParameter {
|
---|
46 | get { return (IValueLookupParameter<BoolValue>)Parameters[ApplyScalingParameterName]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<DoubleValue> AlphaParameter {
|
---|
49 | get { return (ILookupParameter<DoubleValue>)Parameters["Alpha"]; }
|
---|
50 | }
|
---|
51 | public ILookupParameter<DoubleValue> BetaParameter {
|
---|
52 | get { return (ILookupParameter<DoubleValue>)Parameters["Beta"]; }
|
---|
53 | }
|
---|
54 | public ILookupParameter<DoubleValue> QualityVarianceParameter {
|
---|
55 | get { return (ILookupParameter<DoubleValue>)Parameters[QualityVarianceParameterName]; }
|
---|
56 | }
|
---|
57 | public ILookupParameter<IntValue> QualitySamplesParameter {
|
---|
58 | get { return (ILookupParameter<IntValue>)Parameters[QualitySamplesParameterName]; }
|
---|
59 | }
|
---|
60 | public ILookupParameter<DoubleValue> DecompositionBiasParameter {
|
---|
61 | get { return (ILookupParameter<DoubleValue>)Parameters[DecompositionBiasParameterName]; }
|
---|
62 | }
|
---|
63 | public ILookupParameter<DoubleValue> DecompositionVarianceParameter {
|
---|
64 | get { return (ILookupParameter<DoubleValue>)Parameters[DecompositionVarianceParameterName]; }
|
---|
65 | }
|
---|
66 | public ILookupParameter<DoubleValue> DecompositionCovarianceParameter {
|
---|
67 | get { return (ILookupParameter<DoubleValue>)Parameters[DecompositionCovarianceParameterName]; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | #endregion
|
---|
71 | #region properties
|
---|
72 | public BoolValue ApplyScaling {
|
---|
73 | get { return ApplyScalingParameter.ActualValue; }
|
---|
74 | }
|
---|
75 | public DoubleValue Alpha {
|
---|
76 | get { return AlphaParameter.ActualValue; }
|
---|
77 | set { AlphaParameter.ActualValue = value; }
|
---|
78 | }
|
---|
79 | public DoubleValue Beta {
|
---|
80 | get { return BetaParameter.ActualValue; }
|
---|
81 | set { BetaParameter.ActualValue = value; }
|
---|
82 | }
|
---|
83 | public DoubleValue QualityVariance {
|
---|
84 | get { return QualityVarianceParameter.ActualValue; }
|
---|
85 | set { QualityVarianceParameter.ActualValue = value; }
|
---|
86 | }
|
---|
87 | public IntValue QualitySamples {
|
---|
88 | get { return QualitySamplesParameter.ActualValue; }
|
---|
89 | set { QualitySamplesParameter.ActualValue = value; }
|
---|
90 | }
|
---|
91 | #endregion
|
---|
92 | [StorableConstructor]
|
---|
93 | private SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
94 | private SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator(SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
95 | public SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator()
|
---|
96 | : base() {
|
---|
97 | Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyScalingParameterName, "Determines if the estimated values should be scaled.", new BoolValue(true)));
|
---|
98 | Parameters.Add(new LookupParameter<DoubleValue>("Alpha", "Alpha parameter for linear scaling of the estimated values."));
|
---|
99 | Parameters.Add(new LookupParameter<DoubleValue>("Beta", "Beta parameter for linear scaling of the estimated values."));
|
---|
100 | Parameters.Add(new LookupParameter<DoubleValue>(QualityVarianceParameterName, "A parameter which stores the variance of the squared errors."));
|
---|
101 | Parameters.Add(new LookupParameter<IntValue>(QualitySamplesParameterName, " The number of evaluated samples."));
|
---|
102 | Parameters.Add(new LookupParameter<DoubleValue>(DecompositionBiasParameterName, "A parameter which stores the relativ bias of the MSE."));
|
---|
103 | Parameters.Add(new LookupParameter<DoubleValue>(DecompositionVarianceParameterName, "A parameter which stores the relativ bias of the MSE."));
|
---|
104 | Parameters.Add(new LookupParameter<DoubleValue>(DecompositionCovarianceParameterName, "A parameter which stores the relativ bias of the MSE."));
|
---|
105 | }
|
---|
106 |
|
---|
107 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
108 | return new SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator(this, cloner);
|
---|
109 | }
|
---|
110 |
|
---|
111 | public override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) {
|
---|
112 | double alpha, beta;
|
---|
113 | double meanSE, varianceSE;
|
---|
114 | int count;
|
---|
115 | double bias, variance, covariance;
|
---|
116 | double mse;
|
---|
117 | if (ExecutionContext != null) {
|
---|
118 | if (ApplyScaling.Value) {
|
---|
119 | mse = Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, out beta, out alpha, out meanSE, out varianceSE, out count, out bias, out variance, out covariance);
|
---|
120 | Alpha = new DoubleValue(alpha);
|
---|
121 | Beta = new DoubleValue(beta);
|
---|
122 | } else {
|
---|
123 | mse = CalculateWithScaling(interpreter, solution,lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, 1, 0, out meanSE, out varianceSE, out count, out bias, out variance, out covariance);
|
---|
124 | }
|
---|
125 | QualityVariance = new DoubleValue(varianceSE);
|
---|
126 | QualitySamples = new IntValue(count);
|
---|
127 | DecompositionBiasParameter.ActualValue = new DoubleValue(bias / meanSE);
|
---|
128 | DecompositionVarianceParameter.ActualValue = new DoubleValue(variance / meanSE);
|
---|
129 | DecompositionCovarianceParameter.ActualValue = new DoubleValue(covariance / meanSE);
|
---|
130 | } else {
|
---|
131 | if (ApplyScalingParameter.Value != null && ApplyScalingParameter.Value.Value)
|
---|
132 | mse = Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, out beta, out alpha, out meanSE, out varianceSE, out count, out bias, out variance, out covariance);
|
---|
133 | else
|
---|
134 | mse = CalculateWithScaling(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, 1, 0, out meanSE, out varianceSE, out count, out bias, out variance, out covariance);
|
---|
135 | }
|
---|
136 |
|
---|
137 | return mse;
|
---|
138 | }
|
---|
139 |
|
---|
140 | public static double Calculate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows, out double beta, out double alpha, out double meanSE, out double varianceSE, out int count, out double bias, out double variance, out double covariance) {
|
---|
141 | IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
142 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
|
---|
143 | CalculateScalingParameters(originalValues, estimatedValues, out beta, out alpha);
|
---|
144 |
|
---|
145 | return CalculateWithScaling(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, beta, alpha, out meanSE, out varianceSE, out count, out bias, out variance, out covariance);
|
---|
146 | }
|
---|
147 |
|
---|
148 | public static double CalculateWithScaling(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows, double beta, double alpha, out double meanSE, out double varianceSE, out int count, out double bias, out double variance, out double covariance) {
|
---|
149 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
|
---|
150 | IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
151 | IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
|
---|
152 | IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
|
---|
153 | OnlineMeanAndVarianceCalculator seEvaluator = new OnlineMeanAndVarianceCalculator();
|
---|
154 | OnlineMeanAndVarianceCalculator originalMeanEvaluator = new OnlineMeanAndVarianceCalculator();
|
---|
155 | OnlineMeanAndVarianceCalculator estimatedMeanEvaluator = new OnlineMeanAndVarianceCalculator();
|
---|
156 | OnlinePearsonsRSquaredEvaluator r2Evaluator = new OnlinePearsonsRSquaredEvaluator();
|
---|
157 |
|
---|
158 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
159 | double estimated = estimatedEnumerator.Current * beta + alpha;
|
---|
160 | double original = originalEnumerator.Current;
|
---|
161 | if (double.IsNaN(estimated))
|
---|
162 | estimated = upperEstimationLimit;
|
---|
163 | else
|
---|
164 | estimated = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, estimated));
|
---|
165 | double error = estimated - original;
|
---|
166 | error *= error;
|
---|
167 | seEvaluator.Add(error);
|
---|
168 | originalMeanEvaluator.Add(original);
|
---|
169 | estimatedMeanEvaluator.Add(estimated);
|
---|
170 | r2Evaluator.Add(original, estimated);
|
---|
171 | }
|
---|
172 |
|
---|
173 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
|
---|
174 | throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
|
---|
175 | } else {
|
---|
176 | meanSE = seEvaluator.Mean;
|
---|
177 | varianceSE = seEvaluator.Variance;
|
---|
178 | count = seEvaluator.Count;
|
---|
179 | bias = (originalMeanEvaluator.Mean - estimatedMeanEvaluator.Mean);
|
---|
180 | bias *= bias;
|
---|
181 |
|
---|
182 | double sO = Math.Sqrt(originalMeanEvaluator.Variance);
|
---|
183 | double sE = Math.Sqrt(estimatedMeanEvaluator.Variance);
|
---|
184 | variance = sO - sE;
|
---|
185 | variance *= variance;
|
---|
186 | double r = Math.Sqrt(r2Evaluator.RSquared);
|
---|
187 | covariance = 2 * sO * sE * (1 - r);
|
---|
188 | return seEvaluator.Mean;
|
---|
189 | }
|
---|
190 | }
|
---|
191 |
|
---|
192 | /// <summary>
|
---|
193 | /// Calculates linear scaling parameters in one pass.
|
---|
194 | /// The formulas to calculate the scaling parameters were taken from Scaled Symblic Regression by Maarten Keijzer.
|
---|
195 | /// http://www.springerlink.com/content/x035121165125175/
|
---|
196 | /// </summary>
|
---|
197 | public static void CalculateScalingParameters(IEnumerable<double> original, IEnumerable<double> estimated, out double beta, out double alpha) {
|
---|
198 | IEnumerator<double> originalEnumerator = original.GetEnumerator();
|
---|
199 | IEnumerator<double> estimatedEnumerator = estimated.GetEnumerator();
|
---|
200 | OnlineMeanAndVarianceCalculator yVarianceCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
201 | OnlineMeanAndVarianceCalculator tMeanCalculator = new OnlineMeanAndVarianceCalculator();
|
---|
202 | OnlineCovarianceEvaluator ytCovarianceEvaluator = new OnlineCovarianceEvaluator();
|
---|
203 | int cnt = 0;
|
---|
204 |
|
---|
205 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
206 | double y = estimatedEnumerator.Current;
|
---|
207 | double t = originalEnumerator.Current;
|
---|
208 | if (IsValidValue(t) && IsValidValue(y)) {
|
---|
209 | tMeanCalculator.Add(t);
|
---|
210 | yVarianceCalculator.Add(y);
|
---|
211 | ytCovarianceEvaluator.Add(y, t);
|
---|
212 |
|
---|
213 | cnt++;
|
---|
214 | }
|
---|
215 | }
|
---|
216 |
|
---|
217 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())
|
---|
218 | throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
|
---|
219 | if (cnt < 2) {
|
---|
220 | alpha = 0;
|
---|
221 | beta = 1;
|
---|
222 | } else {
|
---|
223 | if (yVarianceCalculator.Variance.IsAlmost(0.0))
|
---|
224 | beta = 1;
|
---|
225 | else
|
---|
226 | beta = ytCovarianceEvaluator.Covariance / yVarianceCalculator.Variance;
|
---|
227 |
|
---|
228 | alpha = tMeanCalculator.Mean - beta * yVarianceCalculator.Mean;
|
---|
229 | }
|
---|
230 | }
|
---|
231 |
|
---|
232 | private static bool IsValidValue(double d) {
|
---|
233 | return !double.IsInfinity(d) && !double.IsNaN(d) && d > -1.0E07 && d < 1.0E07; // don't consider very large or very small values for scaling
|
---|
234 | }
|
---|
235 | }
|
---|
236 | }
|
---|