Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Evaluators/SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator.cs @ 4555

Last change on this file since 4555 was 4555, checked in by gkronber, 14 years ago

Improved time series evaluators. #1142

File size: 10.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Problems.DataAnalysis.Evaluators;
31using HeuristicLab.Problems.DataAnalysis.Symbolic;
32
33namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
34  [Item("SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator", "Calculates the mean and the variance of the squared errors of a linearly scaled symbolic regression solution.")]
35  [StorableClass]
36  public class SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator : SymbolicRegressionMeanSquaredErrorEvaluator {
37    private const string QualityVarianceParameterName = "QualityVariance";
38    private const string QualitySamplesParameterName = "QualitySamples";
39    private const string DecompositionBiasParameterName = "QualityDecompositionBias";
40    private const string DecompositionVarianceParameterName = "QualityDecompositionVariance";
41    private const string DecompositionCovarianceParameterName = "QualityDecompositionCovariance";
42    private const string ApplyScalingParameterName = "ApplyScaling";
43
44    #region parameter properties
45    public IValueLookupParameter<BoolValue> ApplyScalingParameter {
46      get { return (IValueLookupParameter<BoolValue>)Parameters[ApplyScalingParameterName]; }
47    }
48    public ILookupParameter<DoubleValue> AlphaParameter {
49      get { return (ILookupParameter<DoubleValue>)Parameters["Alpha"]; }
50    }
51    public ILookupParameter<DoubleValue> BetaParameter {
52      get { return (ILookupParameter<DoubleValue>)Parameters["Beta"]; }
53    }
54    public ILookupParameter<DoubleValue> QualityVarianceParameter {
55      get { return (ILookupParameter<DoubleValue>)Parameters[QualityVarianceParameterName]; }
56    }
57    public ILookupParameter<IntValue> QualitySamplesParameter {
58      get { return (ILookupParameter<IntValue>)Parameters[QualitySamplesParameterName]; }
59    }
60    public ILookupParameter<DoubleValue> DecompositionBiasParameter {
61      get { return (ILookupParameter<DoubleValue>)Parameters[DecompositionBiasParameterName]; }
62    }
63    public ILookupParameter<DoubleValue> DecompositionVarianceParameter {
64      get { return (ILookupParameter<DoubleValue>)Parameters[DecompositionVarianceParameterName]; }
65    }
66    public ILookupParameter<DoubleValue> DecompositionCovarianceParameter {
67      get { return (ILookupParameter<DoubleValue>)Parameters[DecompositionCovarianceParameterName]; }
68    }
69
70    #endregion
71    #region properties
72    public BoolValue ApplyScaling {
73      get { return ApplyScalingParameter.ActualValue; }
74    }
75    public DoubleValue Alpha {
76      get { return AlphaParameter.ActualValue; }
77      set { AlphaParameter.ActualValue = value; }
78    }
79    public DoubleValue Beta {
80      get { return BetaParameter.ActualValue; }
81      set { BetaParameter.ActualValue = value; }
82    }
83    public DoubleValue QualityVariance {
84      get { return QualityVarianceParameter.ActualValue; }
85      set { QualityVarianceParameter.ActualValue = value; }
86    }
87    public IntValue QualitySamples {
88      get { return QualitySamplesParameter.ActualValue; }
89      set { QualitySamplesParameter.ActualValue = value; }
90    }
91    #endregion
92    public SymbolicRegressionScaledMeanAndVarianceSquaredErrorEvaluator()
93      : base() {
94      Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyScalingParameterName, "Determines if the estimated values should be scaled.", new BoolValue(true)));
95      Parameters.Add(new LookupParameter<DoubleValue>("Alpha", "Alpha parameter for linear scaling of the estimated values."));
96      Parameters.Add(new LookupParameter<DoubleValue>("Beta", "Beta parameter for linear scaling of the estimated values."));
97      Parameters.Add(new LookupParameter<DoubleValue>(QualityVarianceParameterName, "A parameter which stores the variance of the squared errors."));
98      Parameters.Add(new LookupParameter<IntValue>(QualitySamplesParameterName, " The number of evaluated samples."));
99      Parameters.Add(new LookupParameter<DoubleValue>(DecompositionBiasParameterName, "A parameter which stores the relativ bias of the MSE."));
100      Parameters.Add(new LookupParameter<DoubleValue>(DecompositionVarianceParameterName, "A parameter which stores the relativ bias of the MSE."));
101      Parameters.Add(new LookupParameter<DoubleValue>(DecompositionCovarianceParameterName, "A parameter which stores the relativ bias of the MSE."));
102    }
103
104    public override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) {
105      double alpha, beta;
106      double meanSE, varianceSE;
107      int count;
108      double bias, variance, covariance;
109      double mse;
110      if (ApplyScaling.Value) {
111        mse = Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable, rows, out beta, out alpha, out meanSE, out varianceSE, out count, out bias, out variance, out covariance);
112        Alpha = new DoubleValue(alpha);
113        Beta = new DoubleValue(beta);
114      } else {
115        mse = CalculateWithScaling(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable, rows, 1, 0, out meanSE, out varianceSE, out count, out bias, out variance, out covariance);
116      }
117      QualityVariance = new DoubleValue(varianceSE);
118      QualitySamples = new IntValue(count);
119      DecompositionBiasParameter.ActualValue = new DoubleValue(bias / meanSE);
120      DecompositionVarianceParameter.ActualValue = new DoubleValue(variance / meanSE);
121      DecompositionCovarianceParameter.ActualValue = new DoubleValue(covariance / meanSE);
122      return mse;
123    }
124
125    public static double Calculate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows, out double beta, out double alpha, out double meanSE, out double varianceSE, out int count, out double bias, out double variance, out double covariance) {
126      IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
127      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
128      SymbolicRegressionScaledMeanSquaredErrorEvaluator.CalculateScalingParameters(originalValues, estimatedValues, out beta, out alpha);
129
130      return CalculateWithScaling(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows, beta, alpha, out meanSE, out varianceSE, out count, out bias, out variance, out covariance);
131    }
132
133    public static double CalculateWithScaling(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows, double beta, double alpha, out double meanSE, out double varianceSE, out int count, out double bias, out double variance, out double covariance) {
134      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
135      IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
136      IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
137      IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
138      OnlineMeanAndVarianceCalculator seEvaluator = new OnlineMeanAndVarianceCalculator();
139      OnlineMeanAndVarianceCalculator originalMeanEvaluator = new OnlineMeanAndVarianceCalculator();
140      OnlineMeanAndVarianceCalculator estimatedMeanEvaluator = new OnlineMeanAndVarianceCalculator();
141      OnlinePearsonsRSquaredEvaluator r2Evaluator = new OnlinePearsonsRSquaredEvaluator();
142
143      while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
144        double estimated = estimatedEnumerator.Current * beta + alpha;
145        double original = originalEnumerator.Current;
146        if (double.IsNaN(estimated))
147          estimated = upperEstimationLimit;
148        else
149          estimated = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, estimated));
150        double error = estimated - original;
151        error *= error;
152        seEvaluator.Add(error);
153        originalMeanEvaluator.Add(original);
154        estimatedMeanEvaluator.Add(estimated);
155        r2Evaluator.Add(original, estimated);
156      }
157
158      if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
159        throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
160      } else {
161        meanSE = seEvaluator.Mean;
162        varianceSE = seEvaluator.Variance;
163        count = seEvaluator.Count;
164        bias = (originalMeanEvaluator.Mean - estimatedMeanEvaluator.Mean);
165        bias *= bias;
166
167        double sO = Math.Sqrt(originalMeanEvaluator.Variance);
168        double sE = Math.Sqrt(estimatedMeanEvaluator.Variance);
169        variance = sO - sE;
170        variance *= variance;
171        double r = Math.Sqrt(r2Evaluator.RSquared);
172        covariance = 2 * sO * sE * (1 - r);
173        return seEvaluator.Mean;
174      }
175    }
176  }
177}
Note: See TracBrowser for help on using the repository browser.