Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis.IslandAlgorithms/HeuristicLab.Algorithms.DataAnalysis.Symbolic/3.3/SymbolicDataAnalysisIslandGAEvaluator.cs @ 9961

Last change on this file since 9961 was 9182, checked in by mkommend, 12 years ago

#1997: Added reevaluation of elits to symbolic data analysis island ga and changed evaluator to combine the fixed and random samples.

File size: 6.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Operators;
28using HeuristicLab.Optimization;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using HeuristicLab.Random;
34
35namespace HeuristicLab.Algorithms.DataAnalysis.Symbolic {
36  [StorableClass]
37  public sealed class SymbolicDataAnalysisIslandGAEvaluator<T> : SingleSuccessorOperator, IStochasticOperator, ISymbolicDataAnalysisIslandGAEvaluator
38    where T : class,IDataAnalysisProblemData {
39    private const string RandomParameterName = "Random";
40    private const string ProblemDataParameterName = "ProblemData";
41    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
42    private const string EvaluatorParameterName = "ProblemEvaluator";
43    private const string QualityParameterName = "Quality";
44    private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
45    private const string FixedSamplesPartitionParameterName = "FixedSamplesPartition";
46    private const string RandomSamplesParameterName = "RandomSamples";
47
48    #region parameter properties
49    public ILookupParameter<IRandom> RandomParameter {
50      get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
51    }
52    public ILookupParameter<T> ProblemDataParameter {
53      get { return (ILookupParameter<T>)Parameters[ProblemDataParameterName]; }
54    }
55    public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
56      get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
57    }
58    public ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>> EvaluatorParameter {
59      get { return (ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>>)Parameters[EvaluatorParameterName]; }
60    }
61    public ILookupParameter<DoubleValue> QualityParameter {
62      get { return (ILookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
63    }
64    public IValueLookupParameter<IntRange> FitnessCalculationPartitionParameter {
65      get { return (IValueLookupParameter<IntRange>)Parameters[FitnessCalculationPartitionParameterName]; }
66    }
67    public ILookupParameter<IntRange> FixedSamplesPartitionParameter {
68      get { return (ILookupParameter<IntRange>)Parameters[FixedSamplesPartitionParameterName]; }
69    }
70    public ILookupParameter<IntValue> RandomSamplesParameter {
71      get { return (ILookupParameter<IntValue>)Parameters[RandomSamplesParameterName]; }
72    }
73    #endregion
74
75
76    [StorableConstructor]
77    private SymbolicDataAnalysisIslandGAEvaluator(bool deserializing) : base(deserializing) { }
78    private SymbolicDataAnalysisIslandGAEvaluator(SymbolicDataAnalysisIslandGAEvaluator<T> original, Cloner cloner)
79      : base(original, cloner) {
80    }
81    public override IDeepCloneable Clone(Cloner cloner) {
82      return new SymbolicDataAnalysisIslandGAEvaluator<T>(this, cloner);
83    }
84
85    public SymbolicDataAnalysisIslandGAEvaluator()
86      : base() {
87      Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
88      Parameters.Add(new LookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
89      Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree."));
90      Parameters.Add(new LookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>>(EvaluatorParameterName, "The evaluator provided by the symbolic data analysis  problem."));
91      Parameters.Add(new LookupParameter<DoubleValue>(QualityParameterName, "The quality which is calculated by the encapsulated evaluator."));
92      Parameters.Add(new ValueLookupParameter<IntRange>(FitnessCalculationPartitionParameterName, "The data partition used to calculate the fitness"));
93      Parameters.Add(new LookupParameter<IntRange>(FixedSamplesPartitionParameterName, "The data partition which is used to calculate the fitness on the fixed samples."));
94      Parameters.Add(new LookupParameter<IntValue>(RandomSamplesParameterName, "The number of random samples used for fitness calculation in each island."));
95
96      EvaluatorParameter.Hidden = true;
97    }
98
99    public override IOperation Apply() {
100      var evaluator = EvaluatorParameter.ActualValue;
101      var tree = SymbolicExpressionTreeParameter.ActualValue;
102      var problemData = ProblemDataParameter.ActualValue;
103
104      var samplesStart = FitnessCalculationPartitionParameter.ActualValue.Start;
105      var samplesEnd = FitnessCalculationPartitionParameter.ActualValue.End;
106      var fixedSamplesStart = FixedSamplesPartitionParameter.ActualValue.Start;
107      var fixedSamplesEnd = FixedSamplesPartitionParameter.ActualValue.End;
108      var randomSamples = RandomSamplesParameter.ActualValue.Value;
109      var maxRandomSamples = samplesEnd - samplesStart - fixedSamplesEnd + fixedSamplesStart;
110
111      //create rows for evaluation
112      var fixedRows = Enumerable.Range(fixedSamplesStart, fixedSamplesEnd - fixedSamplesStart);
113      var randomRows = Enumerable.Range(samplesStart, samplesEnd - samplesStart).Where(r => r < fixedSamplesStart || r >= fixedSamplesEnd);
114      randomRows = randomRows.SampleRandomWithoutRepetition(RandomParameter.ActualValue, randomSamples, maxRandomSamples);
115      var rows = fixedRows.Concat(randomRows);
116
117      var executionContext = new ExecutionContext(ExecutionContext, evaluator, ExecutionContext.Scope);
118      var fitness = evaluator.Evaluate(executionContext, tree, problemData, rows);
119      QualityParameter.ActualValue = new DoubleValue(fitness);
120      return base.Apply();
121    }
122  }
123}
Note: See TracBrowser for help on using the repository browser.