Free cookie consent management tool by TermsFeed Policy Generator

source: branches/DataAnalysis.IslandAlgorithms/HeuristicLab.Algorithms.DataAnalysis.Symbolic/3.3/SymbolicDataAnalysisIslandGAEvaluator.cs @ 9077

Last change on this file since 9077 was 9077, checked in by mkommend, 12 years ago

#1997: Added first working version of SymbolicDataAnalysisIslandGA.

File size: 8.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Operators;
28using HeuristicLab.Optimization;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using HeuristicLab.Random;
34
35namespace HeuristicLab.Algorithms.DataAnalysis.Symbolic {
36  [StorableClass]
37  public sealed class SymbolicDataAnalysisIslandGAEvaluator<T> : SingleSuccessorOperator, IStochasticOperator, ISymbolicDataAnalysisIslandGAEvaluator
38    where T : class,IDataAnalysisProblemData {
39    private const string RandomParameterName = "Random";
40    private const string ProblemDataParameterName = "ProblemData";
41    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
42    private const string EvaluatorParameterName = "ProblemEvaluator";
43    private const string QualityParameterName = "Quality";
44    private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
45    private const string FixedSamplesPartitionParameterName = "FixedSamplesPartition";
46    private const string FixedSamplesParameterName = "FixedSamples";
47    private const string FixedSamplesFitnessWeightParameterName = "FixedSamplesFitnessWeight";
48    private const string RandomSamplesParameterName = "RandomSamples";
49    private const string RandomSamplesFitnessWeightParameterName = "RandomSamplesFitnessWeight";
50
51    #region parameter properties
52    public ILookupParameter<IRandom> RandomParameter {
53      get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
54    }
55    public ILookupParameter<T> ProblemDataParameter {
56      get { return (ILookupParameter<T>)Parameters[ProblemDataParameterName]; }
57    }
58    public ILookupParameter<ISymbolicExpressionTree> SymbolicExpressionTreeParameter {
59      get { return (ILookupParameter<ISymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
60    }
61    public ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>> EvaluatorParameter {
62      get { return (ILookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>>)Parameters[EvaluatorParameterName]; }
63    }
64    public ILookupParameter<DoubleValue> QualityParameter {
65      get { return (ILookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
66    }
67    public IValueLookupParameter<IntRange> FitnessCalculationPartitionParameter {
68      get { return (IValueLookupParameter<IntRange>)Parameters[FitnessCalculationPartitionParameterName]; }
69    }
70    public ILookupParameter<IntRange> FixedSamplesPartitionParameter {
71      get { return (ILookupParameter<IntRange>)Parameters[FixedSamplesPartitionParameterName]; }
72    }
73    public ILookupParameter<IntValue> FixedSamplesParameter {
74      get { return (ILookupParameter<IntValue>)Parameters[FixedSamplesParameterName]; }
75    }
76    public IFixedValueParameter<DoubleValue> FixedSamplesFitnessWeightParameter {
77      get { return (IFixedValueParameter<DoubleValue>)Parameters[FixedSamplesFitnessWeightParameterName]; }
78    }
79    public ILookupParameter<IntValue> RandomSamplesParameter {
80      get { return (ILookupParameter<IntValue>)Parameters[RandomSamplesParameterName]; }
81    }
82    public IFixedValueParameter<DoubleValue> RandomSamplesFitnessWeightParameter {
83      get { return (IFixedValueParameter<DoubleValue>)Parameters[RandomSamplesFitnessWeightParameterName]; }
84    }
85    #endregion
86
87    #region properties
88    public double FixedSamplesFitnessWeight {
89      get { return FixedSamplesFitnessWeightParameter.Value.Value; }
90      set { FixedSamplesFitnessWeightParameter.Value.Value = value; }
91    }
92    public double RandomSamplesFitnessWeight {
93      get { return RandomSamplesFitnessWeightParameter.Value.Value; }
94      set { RandomSamplesFitnessWeightParameter.Value.Value = value; }
95    }
96    #endregion
97
98    [StorableConstructor]
99    private SymbolicDataAnalysisIslandGAEvaluator(bool deserializing) : base(deserializing) { }
100    private SymbolicDataAnalysisIslandGAEvaluator(SymbolicDataAnalysisIslandGAEvaluator<T> original, Cloner cloner)
101      : base(original, cloner) {
102    }
103    public override IDeepCloneable Clone(Cloner cloner) {
104      return new SymbolicDataAnalysisIslandGAEvaluator<T>(this, cloner);
105    }
106
107    public SymbolicDataAnalysisIslandGAEvaluator()
108      : base() {
109      Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
110      Parameters.Add(new LookupParameter<T>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
111      Parameters.Add(new LookupParameter<ISymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic data analysis solution encoded as a symbolic expression tree."));
112      Parameters.Add(new LookupParameter<ISymbolicDataAnalysisSingleObjectiveEvaluator<T>>(EvaluatorParameterName, "The evaluator provided by the symbolic data analysis  problem."));
113      Parameters.Add(new LookupParameter<DoubleValue>(QualityParameterName, "The quality which is calculated by the encapsulated evaluator."));
114      Parameters.Add(new ValueLookupParameter<IntRange>(FitnessCalculationPartitionParameterName, "The data partition used to calculate the fitness"));
115      Parameters.Add(new LookupParameter<IntRange>(FixedSamplesPartitionParameterName, "The data partition which is used to calculate the fitness on the fixed samples."));
116      Parameters.Add(new LookupParameter<IntValue>(FixedSamplesParameterName, "The number of fixed samples used for fitness calculation in each island."));
117      Parameters.Add(new FixedValueParameter<DoubleValue>(FixedSamplesFitnessWeightParameterName, "The weight of the fitness obtained on the fixed samples.", new DoubleValue(1)));
118      Parameters.Add(new LookupParameter<IntValue>(RandomSamplesParameterName, "The number of random samples used for fitness calculation in each island."));
119      Parameters.Add(new FixedValueParameter<DoubleValue>(RandomSamplesFitnessWeightParameterName, "The weight of the fitness obtained on the random samples.", new DoubleValue(1)));
120
121      EvaluatorParameter.Hidden = true;
122    }
123
124    public override IOperation Apply() {
125      var evaluator = EvaluatorParameter.ActualValue;
126      //calculate fitness on fixed samples
127      if (QualityParameter.ActualValue == null) {
128        var operation = ExecutionContext.CreateOperation(evaluator, ExecutionContext.Scope);
129        return new OperationCollection() { operation, ExecutionContext.CreateOperation(this) };
130      }
131      //calculate fitness on random samples;
132      var samplesStart = FitnessCalculationPartitionParameter.ActualValue.Start;
133      var samplesEnd = FitnessCalculationPartitionParameter.ActualValue.End;
134      var fixedSamplesStart = FixedSamplesPartitionParameter.ActualValue.Start;
135      var fixedSamplesEnd = FixedSamplesPartitionParameter.ActualValue.End;
136      var randomSamples = RandomSamplesParameter.ActualValue.Value;
137      var maxRandomSamples = samplesEnd - samplesStart - fixedSamplesEnd + fixedSamplesStart;
138
139      var rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart).Where(r => r < fixedSamplesStart || r >= fixedSamplesEnd);
140      rows = rows.SampleRandomWithoutRepetition(RandomParameter.ActualValue, randomSamples, maxRandomSamples);
141
142      var fixedSamplesFitness = QualityParameter.ActualValue.Value;
143      var tree = SymbolicExpressionTreeParameter.ActualValue;
144      var problemData = ProblemDataParameter.ActualValue;
145
146      var executionContext = new ExecutionContext(ExecutionContext, evaluator, ExecutionContext.Scope);
147      var randomSamplesFitness = evaluator.Evaluate(executionContext, tree, problemData, rows);
148      QualityParameter.ActualValue.Value = fixedSamplesFitness * FixedSamplesFitnessWeight + randomSamplesFitness * RandomSamplesFitnessWeight;
149      return base.Apply();
150    }
151  }
152}
Note: See TracBrowser for help on using the repository browser.