1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | [StorableClass]
|
---|
31 | [Item("AverageThresholdCalculator", "")]
|
---|
32 | public class AverageThresholdCalculator : DiscriminantClassificationWeightCalculator {
|
---|
33 |
|
---|
34 | public AverageThresholdCalculator()
|
---|
35 | : base() {
|
---|
36 | }
|
---|
37 | [StorableConstructor]
|
---|
38 | protected AverageThresholdCalculator(bool deserializing) : base(deserializing) { }
|
---|
39 | protected AverageThresholdCalculator(AverageThresholdCalculator original, Cloner cloner)
|
---|
40 | : base(original, cloner) {
|
---|
41 | }
|
---|
42 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
43 | return new AverageThresholdCalculator(this, cloner);
|
---|
44 | }
|
---|
45 |
|
---|
46 | protected double[] threshold;
|
---|
47 | protected double[] classValues;
|
---|
48 |
|
---|
49 | protected override IEnumerable<double> DiscriminantCalculateWeights(IEnumerable<IDiscriminantFunctionClassificationSolution> discriminantSolutions) {
|
---|
50 | classValues = discriminantSolutions.First().Model.ClassValues.ToArray();
|
---|
51 | var modelThresholds = discriminantSolutions.Select(x => x.Model.Thresholds.ToArray());
|
---|
52 | threshold = new double[modelThresholds.First().GetLength(0)];
|
---|
53 | for (int i = 0; i < modelThresholds.First().GetLength(0); i++) {
|
---|
54 | threshold[i] = modelThresholds.Select(x => x[i]).Average();
|
---|
55 | }
|
---|
56 | return Enumerable.Repeat<double>(1, discriminantSolutions.Count());
|
---|
57 | }
|
---|
58 |
|
---|
59 | protected override double GetDiscriminantConfidence(IEnumerable<IDiscriminantFunctionClassificationSolution> solutions, int index, double estimatedClassValue) {
|
---|
60 | // only works with binary classification
|
---|
61 | if (!classValues.Count().Equals(2))
|
---|
62 | return double.NaN;
|
---|
63 | Dataset dataset = solutions.First().ProblemData.Dataset;
|
---|
64 | IList<double> values = solutions.Select(s => s.Model.GetEstimatedValues(dataset, Enumerable.Repeat(index, 1)).First()).ToList();
|
---|
65 | if (values.Count <= 0)
|
---|
66 | return double.NaN;
|
---|
67 | double avg = values.Average();
|
---|
68 | return GetAverageConfidence(avg, estimatedClassValue);
|
---|
69 | }
|
---|
70 |
|
---|
71 | public override IEnumerable<double> GetDiscriminantConfidence(IEnumerable<IDiscriminantFunctionClassificationSolution> solutions, IEnumerable<int> indices, IEnumerable<double> estimatedClassValue) {
|
---|
72 | if (!classValues.Count().Equals(2))
|
---|
73 | return Enumerable.Repeat(double.NaN, indices.Count());
|
---|
74 |
|
---|
75 | Dataset dataset = solutions.First().ProblemData.Dataset;
|
---|
76 | double[][] values = solutions.Select(s => s.Model.GetEstimatedValues(dataset, indices).ToArray()).ToArray();
|
---|
77 | double[] confidences = new double[indices.Count()];
|
---|
78 | double[] estimatedClassValueArr = estimatedClassValue.ToArray();
|
---|
79 |
|
---|
80 | for (int i = 0; i < indices.Count(); i++) {
|
---|
81 | double avg = values.Select(x => x[i]).Average();
|
---|
82 | confidences[i] = GetAverageConfidence(avg, estimatedClassValueArr[i]);
|
---|
83 | }
|
---|
84 |
|
---|
85 | return confidences;
|
---|
86 | }
|
---|
87 |
|
---|
88 | protected double GetAverageConfidence(double avg, double estimatedClassValue) {
|
---|
89 | if (estimatedClassValue.Equals(classValues[0])) {
|
---|
90 | if (avg < estimatedClassValue)
|
---|
91 | return 1;
|
---|
92 | else if (avg >= threshold[1])
|
---|
93 | return 0;
|
---|
94 | else {
|
---|
95 | double distance = threshold[1] - classValues[0];
|
---|
96 | return (1 / distance) * (threshold[1] - avg);
|
---|
97 | }
|
---|
98 | } else if (estimatedClassValue.Equals(classValues[1])) {
|
---|
99 | if (avg > estimatedClassValue)
|
---|
100 | return 1;
|
---|
101 | else if (avg <= threshold[1])
|
---|
102 | return 0;
|
---|
103 | else {
|
---|
104 | double distance = classValues[1] - threshold[1];
|
---|
105 | return (1 / distance) * (avg - threshold[1]);
|
---|
106 | }
|
---|
107 | } else
|
---|
108 | return double.NaN;
|
---|
109 | }
|
---|
110 | }
|
---|
111 | }
|
---|