Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ClassificationEnsembleVoting/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/WeightCalculators/AverageThresholdCalculator.cs @ 8101

Last change on this file since 8101 was 8101, checked in by sforsten, 12 years ago

#1776:

  • added two calculators to test purposes
  • ClassificationEnsembleSolutionEstimatedClassValuesView shows the current average confidence of the correct and wrong classified samples
  • some calculators have been excluded from the project, so only relevant calculators are shown
File size: 3.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.DataAnalysis {
30  [StorableClass]
31  [Item("AverageThresholdCalculator", "")]
32  public class AverageThresholdCalculator : DiscriminantClassificationWeightCalculator {
33
34    public AverageThresholdCalculator()
35      : base() {
36    }
37    [StorableConstructor]
38    protected AverageThresholdCalculator(bool deserializing) : base(deserializing) { }
39    protected AverageThresholdCalculator(AverageThresholdCalculator original, Cloner cloner)
40      : base(original, cloner) {
41    }
42    public override IDeepCloneable Clone(Cloner cloner) {
43      return new AverageThresholdCalculator(this, cloner);
44    }
45
46    protected double[] threshold;
47    protected double[] classValues;
48
49    protected override IEnumerable<double> DiscriminantCalculateWeights(IEnumerable<IDiscriminantFunctionClassificationSolution> discriminantSolutions) {
50      classValues = discriminantSolutions.First().Model.ClassValues.ToArray();
51      var modelThresholds = discriminantSolutions.Select(x => x.Model.Thresholds.ToArray());
52      threshold = new double[modelThresholds.First().GetLength(0)];
53      for (int i = 0; i < modelThresholds.First().GetLength(0); i++) {
54        threshold[i] = modelThresholds.Select(x => x[i]).Average();
55      }
56      return Enumerable.Repeat<double>(1, discriminantSolutions.Count());
57    }
58
59    protected override double GetDiscriminantConfidence(IEnumerable<IDiscriminantFunctionClassificationSolution> solutions, int index, double estimatedClassValue) {
60      // only works with binary classification
61      if (!classValues.Count().Equals(2))
62        return double.NaN;
63      Dataset dataset = solutions.First().ProblemData.Dataset;
64      IList<double> values = solutions.Select(s => s.Model.GetEstimatedValues(dataset, Enumerable.Repeat(index, 1)).First()).ToList();
65      if (values.Count <= 0)
66        return double.NaN;
67      double avg = values.Average();
68      if (estimatedClassValue.Equals(classValues[0])) {
69        if (avg < estimatedClassValue)
70          return 1;
71        else if (avg >= threshold[1])
72          return 0;
73        else {
74          double distance = threshold[1] - classValues[0];
75          return (1 / distance) * (threshold[1] - avg);
76        }
77      } else if (estimatedClassValue.Equals(classValues[1])) {
78        if (avg > estimatedClassValue)
79          return 1;
80        else if (avg <= threshold[1])
81          return 0;
82        else {
83          double distance = classValues[1] - threshold[1];
84          return (1 / distance) * (avg - threshold[1]);
85        }
86      } else
87        return double.NaN;
88    }
89  }
90}
Note: See TracBrowser for help on using the repository browser.