[8329] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Windows.Forms;
|
---|
| 26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.MainForm;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis.Interfaces;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
| 32 | [View("Accuracy Covered Dependence")]
|
---|
| 33 | [Content(typeof(IClassificationEnsembleSolution))]
|
---|
| 34 | public partial class ClassificationEnsembleSolutionAccuracyToCoveredSamples : DataAnalysisSolutionEvaluationView {
|
---|
| 35 | private const string ACCURACYCOVERED = "Accuracy to Covered percentage";
|
---|
| 36 |
|
---|
| 37 | private const string SamplesComboBoxAllSamples = "All Samples";
|
---|
| 38 | private const string SamplesComboBoxTrainingSamples = "Training Samples";
|
---|
| 39 | private const string SamplesComboBoxTestSamples = "Test Samples";
|
---|
| 40 |
|
---|
| 41 | // zero is also a point
|
---|
| 42 | private const int maxPoints = 101;
|
---|
| 43 |
|
---|
| 44 | public new ClassificationEnsembleSolution Content {
|
---|
| 45 | get { return (ClassificationEnsembleSolution)base.Content; }
|
---|
| 46 | set { base.Content = value; }
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public ClassificationEnsembleSolutionAccuracyToCoveredSamples()
|
---|
| 50 | : base() {
|
---|
| 51 | InitializeComponent();
|
---|
| 52 |
|
---|
| 53 | SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
|
---|
| 54 | SamplesComboBox.SelectedIndex = 0;
|
---|
| 55 | //configure axis
|
---|
| 56 | this.chart.CustomizeAllChartAreas();
|
---|
| 57 | this.chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
|
---|
| 58 | this.chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
|
---|
| 59 | this.chart.ChartAreas[0].AxisX.IsStartedFromZero = true;
|
---|
| 60 | this.chart.ChartAreas[0].AxisX.Minimum = 0;
|
---|
| 61 | this.chart.ChartAreas[0].AxisX.Maximum = 1;
|
---|
| 62 | this.chart.ChartAreas[0].AxisX.Title = "Covered Samples in %";
|
---|
| 63 |
|
---|
| 64 | this.chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
|
---|
| 65 | this.chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
|
---|
| 66 | this.chart.ChartAreas[0].AxisY.IsStartedFromZero = true;
|
---|
| 67 | this.chart.ChartAreas[0].AxisY.Minimum = 0;
|
---|
| 68 | this.chart.ChartAreas[0].AxisY.Maximum = 1;
|
---|
| 69 | this.chart.ChartAreas[0].AxisY.Title = "Accuracy";
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | private void RedrawChart() {
|
---|
| 73 | this.chart.Series.Clear();
|
---|
| 74 | if (Content != null) {
|
---|
| 75 |
|
---|
| 76 | double[] accuracy = new double[maxPoints + 1];
|
---|
| 77 | double[] covered = new double[maxPoints + 1];
|
---|
| 78 |
|
---|
| 79 | IClassificationEnsembleSolutionWeightCalculator weightCalc = Content.WeightCalculator;
|
---|
| 80 | var solutions = Content.ClassificationSolutions;
|
---|
| 81 | double[] estimatedClassValues;
|
---|
| 82 | double[] classValues;
|
---|
| 83 | OnlineAccuracyCalculator accuracyCalc = new OnlineAccuracyCalculator();
|
---|
| 84 |
|
---|
| 85 | int rows;
|
---|
| 86 | double[] confidences;
|
---|
| 87 |
|
---|
| 88 | if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxAllSamples)) {
|
---|
| 89 | rows = Content.ProblemData.Dataset.Rows;
|
---|
| 90 | estimatedClassValues = Content.EstimatedClassValues.ToArray();
|
---|
| 91 | classValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
|
---|
| 92 | confidences = weightCalc.GetConfidence(solutions, Enumerable.Range(0, rows), estimatedClassValues).ToArray();
|
---|
| 93 | } else {
|
---|
| 94 | IntRange range;
|
---|
| 95 | if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTrainingSamples)) {
|
---|
| 96 | range = Content.ProblemData.TrainingPartition;
|
---|
| 97 | estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
|
---|
| 98 | } else if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTestSamples)) {
|
---|
| 99 | range = Content.ProblemData.TestPartition;
|
---|
| 100 | estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
|
---|
| 101 | } else {
|
---|
| 102 | return;
|
---|
| 103 | }
|
---|
| 104 | rows = range.End - range.Start;
|
---|
| 105 | classValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable)
|
---|
| 106 | .Skip(range.Start).Take(range.End - range.Start).ToArray();
|
---|
| 107 | confidences = new double[rows];
|
---|
| 108 | int index;
|
---|
| 109 | for (int i = 0; i < rows; i++) {
|
---|
| 110 | index = range.Start + i;
|
---|
| 111 | confidences[i] = weightCalc.GetConfidence(GetRelevantSolutions(SamplesComboBox.SelectedItem.ToString(), solutions, index),
|
---|
| 112 | index, estimatedClassValues[i]);
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | for (int i = 0; i < maxPoints; i++) {
|
---|
| 117 | double confidenceValue = (1.0 / (maxPoints - 1)) * i;
|
---|
| 118 | int notCovered = 0;
|
---|
| 119 |
|
---|
| 120 | for (int j = 0; j < rows; j++) {
|
---|
| 121 | if (confidences[j] >= confidenceValue) {
|
---|
| 122 | accuracyCalc.Add(classValues[j], estimatedClassValues[j]);
|
---|
| 123 | } else {
|
---|
| 124 | notCovered++;
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | accuracy[i + 1] = accuracyCalc.Accuracy;
|
---|
| 129 | covered[i] = 1.0 - (double)notCovered / (double)rows;
|
---|
| 130 | accuracyCalc.Reset();
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | accuracy[0] = accuracy[1];
|
---|
| 134 | covered[maxPoints] = 0.0;
|
---|
| 135 |
|
---|
| 136 | accuracy = accuracy.Reverse().ToArray();
|
---|
| 137 | covered = covered.Reverse().ToArray();
|
---|
| 138 |
|
---|
| 139 |
|
---|
| 140 |
|
---|
| 141 | Series serie = this.chart.Series.Add(ACCURACYCOVERED);
|
---|
| 142 | serie.LegendText = ACCURACYCOVERED;
|
---|
| 143 | serie.ChartType = SeriesChartType.StepLine;
|
---|
| 144 | //serie.MarkerStyle = MarkerStyle.Diamond;
|
---|
| 145 | //serie.MarkerSize = 5;
|
---|
| 146 | serie.Points.DataBindXY(covered, accuracy);
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | protected IEnumerable<IClassificationSolution> GetRelevantSolutions(string samplesSelection, IEnumerable<IClassificationSolution> solutions, int curRow) {
|
---|
| 151 | if (samplesSelection == SamplesComboBoxAllSamples)
|
---|
| 152 | return solutions;
|
---|
| 153 | else if (samplesSelection == SamplesComboBoxTrainingSamples)
|
---|
| 154 | return solutions.Where(s => s.ProblemData.IsTrainingSample(curRow));
|
---|
| 155 | else if (samplesSelection == SamplesComboBoxTestSamples)
|
---|
| 156 | return solutions.Where(s => s.ProblemData.IsTestSample(curRow));
|
---|
| 157 | else
|
---|
| 158 | return new List<IClassificationSolution>();
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | #region events
|
---|
| 162 | protected override void RegisterContentEvents() {
|
---|
| 163 | base.RegisterContentEvents();
|
---|
| 164 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
| 165 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
| 166 | }
|
---|
| 167 | protected override void DeregisterContentEvents() {
|
---|
| 168 | base.DeregisterContentEvents();
|
---|
| 169 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
| 170 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | protected override void OnContentChanged() {
|
---|
| 174 | base.OnContentChanged();
|
---|
| 175 | RedrawChart();
|
---|
| 176 | }
|
---|
| 177 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
| 178 | RedrawChart();
|
---|
| 179 | }
|
---|
| 180 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
| 181 | RedrawChart();
|
---|
| 182 | }
|
---|
| 183 | private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
| 184 | RedrawChart();
|
---|
| 185 | }
|
---|
| 186 | #endregion
|
---|
| 187 | }
|
---|
| 188 | }
|
---|