1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Windows.Forms;
|
---|
26 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.MainForm;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Interfaces;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
32 | [View("Accuracy Covered Dependence")]
|
---|
33 | [Content(typeof(IClassificationEnsembleSolution))]
|
---|
34 | public partial class ClassificationEnsembleSolutionAccuracyToCoveredSamples : DataAnalysisSolutionEvaluationView {
|
---|
35 | private const string ACCURACYCOVERED = "Accuracy to Covered percentage";
|
---|
36 |
|
---|
37 | private const string SamplesComboBoxAllSamples = "All Samples";
|
---|
38 | private const string SamplesComboBoxTrainingSamples = "Training Samples";
|
---|
39 | private const string SamplesComboBoxTestSamples = "Test Samples";
|
---|
40 |
|
---|
41 | // zero is also a point
|
---|
42 | private const int maxPoints = 101;
|
---|
43 |
|
---|
44 | public new ClassificationEnsembleSolution Content {
|
---|
45 | get { return (ClassificationEnsembleSolution)base.Content; }
|
---|
46 | set { base.Content = value; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public ClassificationEnsembleSolutionAccuracyToCoveredSamples()
|
---|
50 | : base() {
|
---|
51 | InitializeComponent();
|
---|
52 |
|
---|
53 | SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
|
---|
54 | SamplesComboBox.SelectedIndex = 0;
|
---|
55 | //configure axis
|
---|
56 | this.chart.CustomizeAllChartAreas();
|
---|
57 | this.chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
|
---|
58 | this.chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
|
---|
59 | this.chart.ChartAreas[0].AxisX.IsStartedFromZero = true;
|
---|
60 | this.chart.ChartAreas[0].AxisX.Minimum = 0;
|
---|
61 | this.chart.ChartAreas[0].AxisX.Maximum = 1;
|
---|
62 | this.chart.ChartAreas[0].AxisX.Title = "Covered Samples in %";
|
---|
63 |
|
---|
64 | this.chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
|
---|
65 | this.chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
|
---|
66 | this.chart.ChartAreas[0].AxisY.IsStartedFromZero = true;
|
---|
67 | this.chart.ChartAreas[0].AxisY.Minimum = 0;
|
---|
68 | this.chart.ChartAreas[0].AxisY.Maximum = 1;
|
---|
69 | this.chart.ChartAreas[0].AxisY.Title = "Accuracy";
|
---|
70 | }
|
---|
71 |
|
---|
72 | private void RedrawChart() {
|
---|
73 | this.chart.Series.Clear();
|
---|
74 | if (Content != null) {
|
---|
75 |
|
---|
76 | double[] accuracy = new double[maxPoints + 1];
|
---|
77 | double[] covered = new double[maxPoints + 1];
|
---|
78 |
|
---|
79 | IClassificationEnsembleSolutionWeightCalculator weightCalc = Content.WeightCalculator;
|
---|
80 | var solutions = Content.ClassificationSolutions;
|
---|
81 | double[] estimatedClassValues;
|
---|
82 | double[] classValues;
|
---|
83 | OnlineAccuracyCalculator accuracyCalc = new OnlineAccuracyCalculator();
|
---|
84 |
|
---|
85 | int rows;
|
---|
86 | double[] confidences;
|
---|
87 |
|
---|
88 | if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxAllSamples)) {
|
---|
89 | rows = Content.ProblemData.Dataset.Rows;
|
---|
90 | estimatedClassValues = Content.EstimatedClassValues.ToArray();
|
---|
91 | classValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
|
---|
92 | confidences = weightCalc.GetConfidence(solutions, Enumerable.Range(0, rows), estimatedClassValues).ToArray();
|
---|
93 | } else {
|
---|
94 | IntRange range;
|
---|
95 | if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTrainingSamples)) {
|
---|
96 | range = Content.ProblemData.TrainingPartition;
|
---|
97 | estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
|
---|
98 | } else if (SamplesComboBox.SelectedItem.ToString().Equals(SamplesComboBoxTestSamples)) {
|
---|
99 | range = Content.ProblemData.TestPartition;
|
---|
100 | estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
|
---|
101 | } else {
|
---|
102 | return;
|
---|
103 | }
|
---|
104 | rows = range.End - range.Start;
|
---|
105 | classValues = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable)
|
---|
106 | .Skip(range.Start).Take(range.End - range.Start).ToArray();
|
---|
107 | confidences = new double[rows];
|
---|
108 | int index;
|
---|
109 | for (int i = 0; i < rows; i++) {
|
---|
110 | index = range.Start + i;
|
---|
111 | confidences[i] = weightCalc.GetConfidence(GetRelevantSolutions(SamplesComboBox.SelectedItem.ToString(), solutions, index),
|
---|
112 | index, estimatedClassValues[i]);
|
---|
113 | }
|
---|
114 | }
|
---|
115 |
|
---|
116 | for (int i = 0; i < maxPoints; i++) {
|
---|
117 | double confidenceValue = (1.0 / (maxPoints - 1)) * i;
|
---|
118 | int notCovered = 0;
|
---|
119 |
|
---|
120 | for (int j = 0; j < rows; j++) {
|
---|
121 | if (confidences[j] >= confidenceValue) {
|
---|
122 | accuracyCalc.Add(classValues[j], estimatedClassValues[j]);
|
---|
123 | } else {
|
---|
124 | notCovered++;
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | accuracy[i + 1] = accuracyCalc.Accuracy;
|
---|
129 | covered[i] = 1.0 - (double)notCovered / (double)rows;
|
---|
130 | accuracyCalc.Reset();
|
---|
131 | }
|
---|
132 |
|
---|
133 | accuracy[0] = accuracy[1];
|
---|
134 | covered[maxPoints] = 0.0;
|
---|
135 |
|
---|
136 | accuracy = accuracy.Reverse().ToArray();
|
---|
137 | covered = covered.Reverse().ToArray();
|
---|
138 |
|
---|
139 |
|
---|
140 |
|
---|
141 | Series serie = this.chart.Series.Add(ACCURACYCOVERED);
|
---|
142 | serie.LegendText = ACCURACYCOVERED;
|
---|
143 | serie.ChartType = SeriesChartType.StepLine;
|
---|
144 | //serie.MarkerStyle = MarkerStyle.Diamond;
|
---|
145 | //serie.MarkerSize = 5;
|
---|
146 | serie.Points.DataBindXY(covered, accuracy);
|
---|
147 | }
|
---|
148 | }
|
---|
149 |
|
---|
150 | protected IEnumerable<IClassificationSolution> GetRelevantSolutions(string samplesSelection, IEnumerable<IClassificationSolution> solutions, int curRow) {
|
---|
151 | if (samplesSelection == SamplesComboBoxAllSamples)
|
---|
152 | return solutions;
|
---|
153 | else if (samplesSelection == SamplesComboBoxTrainingSamples)
|
---|
154 | return solutions.Where(s => s.ProblemData.IsTrainingSample(curRow));
|
---|
155 | else if (samplesSelection == SamplesComboBoxTestSamples)
|
---|
156 | return solutions.Where(s => s.ProblemData.IsTestSample(curRow));
|
---|
157 | else
|
---|
158 | return new List<IClassificationSolution>();
|
---|
159 | }
|
---|
160 |
|
---|
161 | #region events
|
---|
162 | protected override void RegisterContentEvents() {
|
---|
163 | base.RegisterContentEvents();
|
---|
164 | Content.ModelChanged += new EventHandler(Content_ModelChanged);
|
---|
165 | Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
|
---|
166 | }
|
---|
167 | protected override void DeregisterContentEvents() {
|
---|
168 | base.DeregisterContentEvents();
|
---|
169 | Content.ModelChanged -= new EventHandler(Content_ModelChanged);
|
---|
170 | Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
|
---|
171 | }
|
---|
172 |
|
---|
173 | protected override void OnContentChanged() {
|
---|
174 | base.OnContentChanged();
|
---|
175 | RedrawChart();
|
---|
176 | }
|
---|
177 | private void Content_ProblemDataChanged(object sender, EventArgs e) {
|
---|
178 | RedrawChart();
|
---|
179 | }
|
---|
180 | private void Content_ModelChanged(object sender, EventArgs e) {
|
---|
181 | RedrawChart();
|
---|
182 | }
|
---|
183 | private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
|
---|
184 | RedrawChart();
|
---|
185 | }
|
---|
186 | #endregion
|
---|
187 | }
|
---|
188 | }
|
---|