Free cookie consent management tool by TermsFeed Policy Generator

source: branches/3116_GAM_Interactions/HeuristicLab.Algorithms.DataAnalysis/3.4/NearestNeighbour/NearestNeighbourRegression.cs

Last change on this file was 17931, checked in by gkronber, 4 years ago

#3117: update alglib to version 3.17

File size: 5.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Threading;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Optimization;
28using HeuristicLab.Parameters;
29using HEAL.Attic;
30using HeuristicLab.Problems.DataAnalysis;
31
32namespace HeuristicLab.Algorithms.DataAnalysis {
33  /// <summary>
34  /// Nearest neighbour regression data analysis algorithm.
35  /// </summary>
36  [Item("Nearest Neighbour Regression (kNN)", "Nearest neighbour regression data analysis algorithm (wrapper for ALGLIB).")]
37  [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 150)]
38  [StorableType("3F940BE0-4F44-4F7F-A3EE-E47423C7F22D")]
39  public sealed class NearestNeighbourRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
40    private const string KParameterName = "K";
41    private const string NearestNeighbourRegressionModelResultName = "Nearest neighbour regression solution";
42    private const string WeightsParameterName = "Weights";
43
44    #region parameter properties
45    public IFixedValueParameter<IntValue> KParameter {
46      get { return (IFixedValueParameter<IntValue>)Parameters[KParameterName]; }
47    }
48    public IValueParameter<DoubleArray> WeightsParameter {
49      get { return (IValueParameter<DoubleArray>)Parameters[WeightsParameterName]; }
50    }
51    #endregion
52    #region properties
53    public int K {
54      get { return KParameter.Value.Value; }
55      set {
56        if (value <= 0) throw new ArgumentException("K must be larger than zero.", "K");
57        else KParameter.Value.Value = value;
58      }
59    }
60    public DoubleArray Weights {
61      get { return WeightsParameter.Value; }
62      set { WeightsParameter.Value = value; }
63    }
64    #endregion
65
66    [StorableConstructor]
67    private NearestNeighbourRegression(StorableConstructorFlag _) : base(_) { }
68    private NearestNeighbourRegression(NearestNeighbourRegression original, Cloner cloner)
69      : base(original, cloner) {
70    }
71    public NearestNeighbourRegression()
72      : base() {
73      Parameters.Add(new FixedValueParameter<IntValue>(KParameterName, "The number of nearest neighbours to consider for regression.", new IntValue(3)));
74      Parameters.Add(new OptionalValueParameter<DoubleArray>(WeightsParameterName, "Optional: use weights to specify individual scaling values for all features. If not set the weights are calculated automatically (each feature is scaled to unit variance)"));
75      Problem = new RegressionProblem();
76    }
77
78    [StorableHook(HookType.AfterDeserialization)]
79    private void AfterDeserialization() {
80      // BackwardsCompatibility3.3
81      #region Backwards compatible code, remove with 3.4
82      if (!Parameters.ContainsKey(WeightsParameterName)) {
83        Parameters.Add(new OptionalValueParameter<DoubleArray>(WeightsParameterName, "Optional: use weights to specify individual scaling values for all features. If not set the weights are calculated automatically (each feature is scaled to unit variance)"));
84      }
85      #endregion
86    }
87
88    public override IDeepCloneable Clone(Cloner cloner) {
89      return new NearestNeighbourRegression(this, cloner);
90    }
91
92    #region nearest neighbour
93    protected override void Run(CancellationToken cancellationToken) {
94      double[] weights = null;
95      if (Weights != null) weights = Weights.CloneAsArray();
96      var solution = CreateNearestNeighbourRegressionSolution(Problem.ProblemData, K, weights);
97      Results.Add(new Result(NearestNeighbourRegressionModelResultName, "The nearest neighbour regression solution.", solution));
98    }
99
100    public static IRegressionSolution CreateNearestNeighbourRegressionSolution(IRegressionProblemData problemData, int k, double[] weights = null) {
101      var clonedProblemData = (IRegressionProblemData)problemData.Clone();
102      return new NearestNeighbourRegressionSolution(Train(problemData, k, weights), clonedProblemData);
103    }
104
105    public static INearestNeighbourModel Train(IRegressionProblemData problemData, int k, double[] weights = null) {
106      return new NearestNeighbourModel(problemData.Dataset,
107        problemData.TrainingIndices,
108        k,
109        problemData.TargetVariable,
110        problemData.AllowedInputVariables,
111        weights);
112    }
113    #endregion
114  }
115}
Note: See TracBrowser for help on using the repository browser.