1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HEAL.Attic;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a nearest neighbour model for regression and classification
|
---|
33 | /// </summary>
|
---|
34 | [StorableType("04A07DF6-6EB5-4D29-B7AE-5BE204CAF6BC")]
|
---|
35 | [Item("NearestNeighbourModel", "Represents a nearest neighbour model for regression and classification.")]
|
---|
36 | public sealed class NearestNeighbourModel : ClassificationModel, INearestNeighbourModel {
|
---|
37 |
|
---|
38 | private alglib.knnmodel model;
|
---|
39 | [Storable]
|
---|
40 | private string SerializedModel {
|
---|
41 | get { alglib.knnserialize(model, out var ser); return ser; }
|
---|
42 | set { if (value != null) alglib.knnunserialize(value, out model); }
|
---|
43 | }
|
---|
44 |
|
---|
45 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
46 | get { return allowedInputVariables; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | [Storable]
|
---|
50 | private string[] allowedInputVariables;
|
---|
51 | [Storable]
|
---|
52 | private double[] classValues;
|
---|
53 | [Storable]
|
---|
54 | private int k;
|
---|
55 | [Storable]
|
---|
56 | private double[] weights;
|
---|
57 | [Storable]
|
---|
58 | private double[] offsets;
|
---|
59 |
|
---|
60 | [StorableConstructor]
|
---|
61 | private NearestNeighbourModel(StorableConstructorFlag _) : base(_) { }
|
---|
62 | private NearestNeighbourModel(NearestNeighbourModel original, Cloner cloner)
|
---|
63 | : base(original, cloner) {
|
---|
64 | if (original.model != null)
|
---|
65 | model = (alglib.knnmodel)original.model.make_copy();
|
---|
66 | k = original.k;
|
---|
67 | weights = new double[original.weights.Length];
|
---|
68 | Array.Copy(original.weights, weights, weights.Length);
|
---|
69 | offsets = new double[original.offsets.Length];
|
---|
70 | Array.Copy(original.offsets, this.offsets, this.offsets.Length);
|
---|
71 |
|
---|
72 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
73 | if (original.classValues != null)
|
---|
74 | this.classValues = (double[])original.classValues.Clone();
|
---|
75 | }
|
---|
76 | public NearestNeighbourModel(IDataset dataset, IEnumerable<int> rows, int k, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<double> weights = null, double[] classValues = null)
|
---|
77 | : base(targetVariable) {
|
---|
78 | Name = ItemName;
|
---|
79 | Description = ItemDescription;
|
---|
80 | this.k = k;
|
---|
81 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
82 | double[,] inputMatrix;
|
---|
83 | this.offsets = this.allowedInputVariables
|
---|
84 | .Select(name => dataset.GetDoubleValues(name, rows).Average() * -1)
|
---|
85 | .Concat(new double[] { 0 }) // no offset for target variable
|
---|
86 | .ToArray();
|
---|
87 | if (weights == null) {
|
---|
88 | // automatic determination of weights (all features should have variance = 1)
|
---|
89 | this.weights = this.allowedInputVariables
|
---|
90 | .Select(name => {
|
---|
91 | var pop = dataset.GetDoubleValues(name, rows).StandardDeviationPop();
|
---|
92 | return pop.IsAlmost(0) ? 1.0 : 1.0 / pop;
|
---|
93 | })
|
---|
94 | .Concat(new double[] { 1.0 }) // no scaling for target variable
|
---|
95 | .ToArray();
|
---|
96 | } else {
|
---|
97 | // user specified weights (+ 1 for target)
|
---|
98 | this.weights = weights.Concat(new double[] { 1.0 }).ToArray();
|
---|
99 | if (this.weights.Length - 1 != this.allowedInputVariables.Length)
|
---|
100 | throw new ArgumentException("The number of elements in the weight vector must match the number of input variables");
|
---|
101 | }
|
---|
102 | inputMatrix = CreateScaledData(dataset, this.allowedInputVariables.Concat(new string[] { targetVariable }), rows, this.offsets, this.weights);
|
---|
103 |
|
---|
104 | if (inputMatrix.ContainsNanOrInfinity())
|
---|
105 | throw new NotSupportedException(
|
---|
106 | "Nearest neighbour model does not support NaN or infinity values in the input dataset.");
|
---|
107 |
|
---|
108 | var nRows = inputMatrix.GetLength(0);
|
---|
109 | var nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
110 |
|
---|
111 | if (classValues != null) {
|
---|
112 | this.classValues = (double[])classValues.Clone();
|
---|
113 | int nClasses = classValues.Length;
|
---|
114 | // map original class values to values [0..nClasses-1]
|
---|
115 | var classIndices = new Dictionary<double, double>();
|
---|
116 | for (int i = 0; i < nClasses; i++)
|
---|
117 | classIndices[classValues[i]] = i;
|
---|
118 |
|
---|
119 | for (int row = 0; row < nRows; row++) {
|
---|
120 | inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]];
|
---|
121 | }
|
---|
122 | }
|
---|
123 |
|
---|
124 | alglib.knnbuildercreate(out var knnbuilder);
|
---|
125 | if (classValues == null) {
|
---|
126 | alglib.knnbuildersetdatasetreg(knnbuilder, inputMatrix, nRows, nFeatures, nout: 1);
|
---|
127 | } else {
|
---|
128 | alglib.knnbuildersetdatasetcls(knnbuilder, inputMatrix, nRows, nFeatures, classValues.Length);
|
---|
129 | }
|
---|
130 | alglib.knnbuilderbuildknnmodel(knnbuilder, k, eps: 0.0, out model, out var report); // eps=0 (exact k-nn search is performed)
|
---|
131 |
|
---|
132 | }
|
---|
133 |
|
---|
134 | private static double[,] CreateScaledData(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, double[] offsets, double[] factors) {
|
---|
135 | var transforms =
|
---|
136 | variables.Select(
|
---|
137 | (_, colIdx) =>
|
---|
138 | new LinearTransformation(variables) { Addend = offsets[colIdx] * factors[colIdx], Multiplier = factors[colIdx] });
|
---|
139 | return dataset.ToArray(variables, transforms, rows);
|
---|
140 | }
|
---|
141 |
|
---|
142 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
143 | return new NearestNeighbourModel(this, cloner);
|
---|
144 | }
|
---|
145 |
|
---|
146 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
147 | double[,] inputData;
|
---|
148 | inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
|
---|
149 |
|
---|
150 | int n = inputData.GetLength(0);
|
---|
151 | int columns = inputData.GetLength(1);
|
---|
152 | double[] x = new double[columns];
|
---|
153 |
|
---|
154 | alglib.knncreatebuffer(model, out var buf);
|
---|
155 | var y = new double[1];
|
---|
156 | for (int row = 0; row < n; row++) {
|
---|
157 | for (int column = 0; column < columns; column++) {
|
---|
158 | x[column] = inputData[row, column];
|
---|
159 | }
|
---|
160 | alglib.knntsprocess(model, buf, x, ref y); // thread-safe process
|
---|
161 | yield return y[0];
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
166 | if (classValues == null) throw new InvalidOperationException("No class values are defined.");
|
---|
167 | double[,] inputData;
|
---|
168 | inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
|
---|
169 |
|
---|
170 | int n = inputData.GetLength(0);
|
---|
171 | int columns = inputData.GetLength(1);
|
---|
172 | double[] x = new double[columns];
|
---|
173 |
|
---|
174 | alglib.knncreatebuffer(model, out var buf);
|
---|
175 | var y = new double[classValues.Length];
|
---|
176 | for (int row = 0; row < n; row++) {
|
---|
177 | for (int column = 0; column < columns; column++) {
|
---|
178 | x[column] = inputData[row, column];
|
---|
179 | }
|
---|
180 | alglib.knntsprocess(model, buf, x, ref y); // thread-safe process
|
---|
181 | // find most probably class
|
---|
182 | var maxC = 0;
|
---|
183 | for (int i = 1; i < y.Length; i++)
|
---|
184 | if (maxC < y[i]) maxC = i;
|
---|
185 | yield return classValues[maxC];
|
---|
186 | }
|
---|
187 | }
|
---|
188 |
|
---|
189 |
|
---|
190 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
191 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
192 | }
|
---|
193 |
|
---|
194 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
195 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
196 |
|
---|
197 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
198 | if (regressionProblemData != null)
|
---|
199 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
200 |
|
---|
201 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
202 | if (classificationProblemData != null)
|
---|
203 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
204 |
|
---|
205 | throw new ArgumentException("The problem data is not compatible with this nearest neighbour model. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
206 | }
|
---|
207 |
|
---|
208 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
209 | return new NearestNeighbourRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
210 | }
|
---|
211 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
212 | return new NearestNeighbourClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
213 | }
|
---|
214 | }
|
---|
215 | }
|
---|