1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.GP.Interfaces;
|
---|
29 | using HeuristicLab.Modeling;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 | using HeuristicLab.Common;
|
---|
32 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
33 | public class LinearScalingPredictorBuilder : OperatorBase {
|
---|
34 | public LinearScalingPredictorBuilder()
|
---|
35 | : base() {
|
---|
36 | AddVariableInfo(new VariableInfo("FunctionTree", "The function tree", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
37 | AddVariableInfo(new VariableInfo("Beta", "Beta parameter for linear scaling as calculated by LinearScaler", typeof(DoubleData), VariableKind.In));
|
---|
38 | AddVariableInfo(new VariableInfo("Alpha", "Alpha parameter for linear scaling as calculated by LinearScaler", typeof(DoubleData), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("UpperEstimationLimit", "Upper limit for estimated value (optional)", typeof(DoubleData), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("LowerEstimationLimit", "Lower limit for estimated value (optional)", typeof(DoubleData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("Predictor", "The predictor combines the function tree and the evaluator and can be used to generate estimated values", typeof(IPredictor), VariableKind.New));
|
---|
42 | }
|
---|
43 |
|
---|
44 | public override string Description {
|
---|
45 | get { return "Extracts the function tree scales the output of the tree and combines the scaled tree with a HL3TreeEvaluator to a predictor for the model analyzer."; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public override IOperation Apply(IScope scope) {
|
---|
49 | IGeneticProgrammingModel model = GetVariableValue<IGeneticProgrammingModel>("FunctionTree", scope, true);
|
---|
50 | //double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
|
---|
51 | //Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
52 | //int start = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
53 | //int end = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
54 | //string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
55 | double alpha = GetVariableValue<DoubleData>("Alpha", scope, true).Data;
|
---|
56 | double beta = GetVariableValue<DoubleData>("Beta", scope, true).Data;
|
---|
57 | DoubleData lowerLimit = GetVariableValue<DoubleData>("LowerEstimationLimit", scope, true, false);
|
---|
58 | DoubleData upperLimit = GetVariableValue<DoubleData>("UpperEstimationLimit", scope, true, false);
|
---|
59 | IPredictor predictor;
|
---|
60 | if (lowerLimit == null || upperLimit == null)
|
---|
61 | predictor = CreatePredictor(model, beta, alpha, double.NegativeInfinity, double.PositiveInfinity);
|
---|
62 | else
|
---|
63 | predictor = CreatePredictor(model, beta, alpha, lowerLimit.Data, upperLimit.Data);
|
---|
64 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Predictor"), predictor));
|
---|
65 | return null;
|
---|
66 | }
|
---|
67 |
|
---|
68 | public static IPredictor CreatePredictor(IGeneticProgrammingModel model, double beta, double alpha, double lowerLimit, double upperLimit) {
|
---|
69 |
|
---|
70 | var evaluator = new HL3TreeEvaluator();
|
---|
71 | evaluator.LowerEvaluationLimit = lowerLimit;
|
---|
72 | evaluator.UpperEvaluationLimit = upperLimit;
|
---|
73 | var resultModel = new GeneticProgrammingModel(MakeSum(MakeProduct(model.FunctionTree, beta), alpha));
|
---|
74 | return new Predictor(evaluator, resultModel, lowerLimit, upperLimit);
|
---|
75 | }
|
---|
76 |
|
---|
77 | private static IFunctionTree MakeSum(IFunctionTree tree, double x) {
|
---|
78 | if (x.IsAlmost(0.0)) return tree;
|
---|
79 | var sum = (new Addition()).GetTreeNode();
|
---|
80 | sum.AddSubTree(tree);
|
---|
81 | sum.AddSubTree(MakeConstant(x));
|
---|
82 | return sum;
|
---|
83 | }
|
---|
84 |
|
---|
85 | private static IFunctionTree MakeProduct(IFunctionTree tree, double a) {
|
---|
86 | if (a.IsAlmost(1.0)) return tree;
|
---|
87 | var prod = (new Multiplication()).GetTreeNode();
|
---|
88 | prod.AddSubTree(tree);
|
---|
89 | prod.AddSubTree(MakeConstant(a));
|
---|
90 | return prod;
|
---|
91 | }
|
---|
92 |
|
---|
93 | private static IFunctionTree MakeConstant(double x) {
|
---|
94 | var constX = (ConstantFunctionTree)(new Constant()).GetTreeNode();
|
---|
95 | constX.Value = x;
|
---|
96 | return constX;
|
---|
97 | }
|
---|
98 | }
|
---|
99 | }
|
---|