1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
34 | [Item("Pearson R² & Average Similarity Evaluator", "Calculates the Pearson R² and the average similarity of a symbolic regression solution candidate.")]
|
---|
35 | [StorableClass]
|
---|
36 | public class PearsonRSquaredAverageSimilarityEvaluator : SymbolicRegressionMultiObjectiveEvaluator {
|
---|
37 | private const string StrictSimilarityParameterName = "StrictSimilarity";
|
---|
38 |
|
---|
39 | private readonly object locker = new object();
|
---|
40 |
|
---|
41 | public IFixedValueParameter<BoolValue> StrictSimilarityParameter {
|
---|
42 | get { return (IFixedValueParameter<BoolValue>)Parameters[StrictSimilarityParameterName]; }
|
---|
43 | }
|
---|
44 |
|
---|
45 | public bool StrictSimilarity {
|
---|
46 | get { return StrictSimilarityParameter.Value.Value; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | [StorableConstructor]
|
---|
50 | protected PearsonRSquaredAverageSimilarityEvaluator(bool deserializing) : base(deserializing) { }
|
---|
51 | protected PearsonRSquaredAverageSimilarityEvaluator(PearsonRSquaredAverageSimilarityEvaluator original, Cloner cloner)
|
---|
52 | : base(original, cloner) {
|
---|
53 | }
|
---|
54 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
55 | return new PearsonRSquaredAverageSimilarityEvaluator(this, cloner);
|
---|
56 | }
|
---|
57 |
|
---|
58 | public PearsonRSquaredAverageSimilarityEvaluator() : base() {
|
---|
59 | Parameters.Add(new FixedValueParameter<BoolValue>(StrictSimilarityParameterName, "Use strict similarity calculation.", new BoolValue(false)));
|
---|
60 | }
|
---|
61 |
|
---|
62 | public override IEnumerable<bool> Maximization { get { return new bool[2] { true, false }; } } // maximize R² and minimize model complexity
|
---|
63 |
|
---|
64 | public override IOperation InstrumentedApply() {
|
---|
65 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
66 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
67 | var problemData = ProblemDataParameter.ActualValue;
|
---|
68 | var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue;
|
---|
69 | var estimationLimits = EstimationLimitsParameter.ActualValue;
|
---|
70 | var applyLinearScaling = ApplyLinearScalingParameter.ActualValue.Value;
|
---|
71 |
|
---|
72 | if (UseConstantOptimization) {
|
---|
73 | SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, solution, problemData, rows, applyLinearScaling, ConstantOptimizationIterations, updateVariableWeights: ConstantOptimizationUpdateVariableWeights, lowerEstimationLimit: estimationLimits.Lower, upperEstimationLimit: estimationLimits.Upper);
|
---|
74 | }
|
---|
75 | double[] qualities = Calculate(interpreter, solution, estimationLimits.Lower, estimationLimits.Upper, problemData, rows, applyLinearScaling, DecimalPlaces);
|
---|
76 | QualitiesParameter.ActualValue = new DoubleArray(qualities);
|
---|
77 | return base.InstrumentedApply();
|
---|
78 | }
|
---|
79 |
|
---|
80 | public double[] Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling, int decimalPlaces) {
|
---|
81 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, problemData, rows, applyLinearScaling);
|
---|
82 | if (decimalPlaces >= 0)
|
---|
83 | r2 = Math.Round(r2, decimalPlaces);
|
---|
84 |
|
---|
85 | var variables = ExecutionContext.Scope.Variables;
|
---|
86 | if (!variables.ContainsKey("AverageSimilarity")) {
|
---|
87 | lock (locker) {
|
---|
88 | CalculateAverageSimilarities(ExecutionContext.Scope.Parent.SubScopes.Where(x => x.Variables.ContainsKey("SymbolicExpressionTree")).ToArray(), StrictSimilarity);
|
---|
89 |
|
---|
90 | }
|
---|
91 | }
|
---|
92 |
|
---|
93 | double avgSim = ((DoubleValue)variables["AverageSimilarity"].Value).Value;
|
---|
94 | return new double[2] { r2, avgSim };
|
---|
95 | }
|
---|
96 |
|
---|
97 | public override double[] Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
98 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
99 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
100 | ApplyLinearScalingParameter.ExecutionContext = context;
|
---|
101 | // DecimalPlaces parameter is a FixedValueParameter and doesn't need the context.
|
---|
102 |
|
---|
103 | double[] quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value, DecimalPlaces);
|
---|
104 |
|
---|
105 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
106 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
107 | ApplyLinearScalingParameter.ExecutionContext = null;
|
---|
108 |
|
---|
109 | return quality;
|
---|
110 | }
|
---|
111 |
|
---|
112 | private readonly Stopwatch sw = new Stopwatch();
|
---|
113 | public void CalculateAverageSimilarities(IScope[] treeScopes, bool strict) {
|
---|
114 | var trees = treeScopes.Select(x => (ISymbolicExpressionTree)x.Variables["SymbolicExpressionTree"].Value).ToArray();
|
---|
115 | var similarityMatrix = SymbolicExpressionTreeHash.ComputeSimilarityMatrix(trees, simplify: false, strict: strict);
|
---|
116 |
|
---|
117 | for (int i = 0; i < treeScopes.Length; ++i) {
|
---|
118 | var scope = treeScopes[i];
|
---|
119 | var avgSimilarity = 0d;
|
---|
120 | for (int j = 0; j < trees.Length; ++j) {
|
---|
121 | if (i == j) continue;
|
---|
122 | avgSimilarity += similarityMatrix[i, j];
|
---|
123 | }
|
---|
124 | avgSimilarity /= trees.Length - 1;
|
---|
125 |
|
---|
126 | if (scope.Variables.ContainsKey("AverageSimilarity")) {
|
---|
127 | ((DoubleValue)scope.Variables["AverageSimilarity"].Value).Value = avgSimilarity;
|
---|
128 | } else {
|
---|
129 | scope.Variables.Add(new Core.Variable("AverageSimilarity", new DoubleValue(avgSimilarity)));
|
---|
130 | }
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|
134 | }
|
---|