1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a nearest neighbour model for regression and classification
|
---|
33 | /// </summary>
|
---|
34 | [StorableClass]
|
---|
35 | [Item("NearestNeighbourModel", "Represents a nearest neighbour model for regression and classification.")]
|
---|
36 | public sealed class NearestNeighbourModel : ClassificationModel, INearestNeighbourModel {
|
---|
37 |
|
---|
38 | private readonly object kdTreeLockObject = new object();
|
---|
39 |
|
---|
40 | private alglib.nearestneighbor.kdtree kdTree;
|
---|
41 | public alglib.nearestneighbor.kdtree KDTree {
|
---|
42 | get { return kdTree; }
|
---|
43 | set {
|
---|
44 | if (value != kdTree) {
|
---|
45 | if (value == null) throw new ArgumentNullException();
|
---|
46 | kdTree = value;
|
---|
47 | OnChanged(EventArgs.Empty);
|
---|
48 | }
|
---|
49 | }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
53 | get { return allowedInputVariables; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | [Storable]
|
---|
57 | private string[] allowedInputVariables;
|
---|
58 | [Storable]
|
---|
59 | private double[] classValues;
|
---|
60 | [Storable]
|
---|
61 | private int k;
|
---|
62 | [Storable(DefaultValue = false)]
|
---|
63 | private bool selfMatch;
|
---|
64 | [Storable(DefaultValue = null)]
|
---|
65 | private double[] weights; // not set for old versions loaded from disk
|
---|
66 | [Storable(DefaultValue = null)]
|
---|
67 | private double[] offsets; // not set for old versions loaded from disk
|
---|
68 |
|
---|
69 | [StorableConstructor]
|
---|
70 | private NearestNeighbourModel(bool deserializing)
|
---|
71 | : base(deserializing) {
|
---|
72 | if (deserializing)
|
---|
73 | kdTree = new alglib.nearestneighbor.kdtree();
|
---|
74 | }
|
---|
75 | private NearestNeighbourModel(NearestNeighbourModel original, Cloner cloner)
|
---|
76 | : base(original, cloner) {
|
---|
77 | kdTree = new alglib.nearestneighbor.kdtree();
|
---|
78 | kdTree.approxf = original.kdTree.approxf;
|
---|
79 | kdTree.boxmax = (double[])original.kdTree.boxmax.Clone();
|
---|
80 | kdTree.boxmin = (double[])original.kdTree.boxmin.Clone();
|
---|
81 | kdTree.buf = (double[])original.kdTree.buf.Clone();
|
---|
82 | kdTree.curboxmax = (double[])original.kdTree.curboxmax.Clone();
|
---|
83 | kdTree.curboxmin = (double[])original.kdTree.curboxmin.Clone();
|
---|
84 | kdTree.curdist = original.kdTree.curdist;
|
---|
85 | kdTree.debugcounter = original.kdTree.debugcounter;
|
---|
86 | kdTree.idx = (int[])original.kdTree.idx.Clone();
|
---|
87 | kdTree.kcur = original.kdTree.kcur;
|
---|
88 | kdTree.kneeded = original.kdTree.kneeded;
|
---|
89 | kdTree.n = original.kdTree.n;
|
---|
90 | kdTree.nodes = (int[])original.kdTree.nodes.Clone();
|
---|
91 | kdTree.normtype = original.kdTree.normtype;
|
---|
92 | kdTree.nx = original.kdTree.nx;
|
---|
93 | kdTree.ny = original.kdTree.ny;
|
---|
94 | kdTree.r = (double[])original.kdTree.r.Clone();
|
---|
95 | kdTree.rneeded = original.kdTree.rneeded;
|
---|
96 | kdTree.selfmatch = original.kdTree.selfmatch;
|
---|
97 | kdTree.splits = (double[])original.kdTree.splits.Clone();
|
---|
98 | kdTree.tags = (int[])original.kdTree.tags.Clone();
|
---|
99 | kdTree.x = (double[])original.kdTree.x.Clone();
|
---|
100 | kdTree.xy = (double[,])original.kdTree.xy.Clone();
|
---|
101 | selfMatch = original.selfMatch;
|
---|
102 | k = original.k;
|
---|
103 | isCompatibilityLoaded = original.IsCompatibilityLoaded;
|
---|
104 | if (!IsCompatibilityLoaded) {
|
---|
105 | weights = new double[original.weights.Length];
|
---|
106 | Array.Copy(original.weights, weights, weights.Length);
|
---|
107 | offsets = new double[original.offsets.Length];
|
---|
108 | Array.Copy(original.offsets, this.offsets, this.offsets.Length);
|
---|
109 | }
|
---|
110 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
111 | if (original.classValues != null)
|
---|
112 | this.classValues = (double[])original.classValues.Clone();
|
---|
113 | }
|
---|
114 | public NearestNeighbourModel(IDataset dataset, IEnumerable<int> rows, int k, bool selfMatch, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<double> weights = null, double[] classValues = null)
|
---|
115 | : base(targetVariable) {
|
---|
116 | Name = ItemName;
|
---|
117 | Description = ItemDescription;
|
---|
118 | this.selfMatch = selfMatch;
|
---|
119 | this.k = k;
|
---|
120 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
121 | double[,] inputMatrix;
|
---|
122 | if (IsCompatibilityLoaded) {
|
---|
123 | // no scaling
|
---|
124 | inputMatrix = dataset.ToArray(
|
---|
125 | this.allowedInputVariables.Concat(new string[] { targetVariable }),
|
---|
126 | rows);
|
---|
127 | } else {
|
---|
128 | this.offsets = this.allowedInputVariables
|
---|
129 | .Select(name => dataset.GetDoubleValues(name, rows).Average() * -1)
|
---|
130 | .Concat(new double[] { 0 }) // no offset for target variable
|
---|
131 | .ToArray();
|
---|
132 | if (weights == null) {
|
---|
133 | // automatic determination of weights (all features should have variance = 1)
|
---|
134 | this.weights = this.allowedInputVariables
|
---|
135 | .Select(name => {
|
---|
136 | var pop = dataset.GetDoubleValues(name, rows).StandardDeviationPop();
|
---|
137 | return pop.IsAlmost(0) ? 1.0 : 1.0 / pop;
|
---|
138 | })
|
---|
139 | .Concat(new double[] { 1.0 }) // no scaling for target variable
|
---|
140 | .ToArray();
|
---|
141 | } else {
|
---|
142 | // user specified weights (+ 1 for target)
|
---|
143 | this.weights = weights.Concat(new double[] { 1.0 }).ToArray();
|
---|
144 | if (this.weights.Length - 1 != this.allowedInputVariables.Length)
|
---|
145 | throw new ArgumentException("The number of elements in the weight vector must match the number of input variables");
|
---|
146 | }
|
---|
147 | inputMatrix = CreateScaledData(dataset, this.allowedInputVariables.Concat(new string[] { targetVariable }), rows, this.offsets, this.weights);
|
---|
148 | }
|
---|
149 |
|
---|
150 | if (inputMatrix.ContainsNanOrInfinity())
|
---|
151 | throw new NotSupportedException(
|
---|
152 | "Nearest neighbour model does not support NaN or infinity values in the input dataset.");
|
---|
153 |
|
---|
154 | this.kdTree = new alglib.nearestneighbor.kdtree();
|
---|
155 |
|
---|
156 | var nRows = inputMatrix.GetLength(0);
|
---|
157 | var nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
158 |
|
---|
159 | if (classValues != null) {
|
---|
160 | this.classValues = (double[])classValues.Clone();
|
---|
161 | int nClasses = classValues.Length;
|
---|
162 | // map original class values to values [0..nClasses-1]
|
---|
163 | var classIndices = new Dictionary<double, double>();
|
---|
164 | for (int i = 0; i < nClasses; i++)
|
---|
165 | classIndices[classValues[i]] = i;
|
---|
166 |
|
---|
167 | for (int row = 0; row < nRows; row++) {
|
---|
168 | inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]];
|
---|
169 | }
|
---|
170 | }
|
---|
171 | alglib.nearestneighbor.kdtreebuild(inputMatrix, nRows, inputMatrix.GetLength(1) - 1, 1, 2, kdTree);
|
---|
172 | }
|
---|
173 |
|
---|
174 | private static double[,] CreateScaledData(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, double[] offsets, double[] factors) {
|
---|
175 | var transforms =
|
---|
176 | variables.Select(
|
---|
177 | (_, colIdx) =>
|
---|
178 | new LinearTransformation(variables) { Addend = offsets[colIdx] * factors[colIdx], Multiplier = factors[colIdx] });
|
---|
179 | return dataset.ToArray(variables, transforms, rows);
|
---|
180 | }
|
---|
181 |
|
---|
182 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
183 | return new NearestNeighbourModel(this, cloner);
|
---|
184 | }
|
---|
185 |
|
---|
186 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
187 | double[,] inputData;
|
---|
188 | if (IsCompatibilityLoaded) {
|
---|
189 | inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
190 | } else {
|
---|
191 | inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
|
---|
192 | }
|
---|
193 |
|
---|
194 | int n = inputData.GetLength(0);
|
---|
195 | int columns = inputData.GetLength(1);
|
---|
196 | double[] x = new double[columns];
|
---|
197 | double[] dists = new double[k];
|
---|
198 | double[,] neighbours = new double[k, columns + 1];
|
---|
199 |
|
---|
200 | for (int row = 0; row < n; row++) {
|
---|
201 | for (int column = 0; column < columns; column++) {
|
---|
202 | x[column] = inputData[row, column];
|
---|
203 | }
|
---|
204 | int numNeighbours;
|
---|
205 | lock (kdTreeLockObject) { // gkronber: the following calls change the kdTree data structure
|
---|
206 | numNeighbours = alglib.nearestneighbor.kdtreequeryknn(kdTree, x, k, selfMatch);
|
---|
207 | alglib.nearestneighbor.kdtreequeryresultsdistances(kdTree, ref dists);
|
---|
208 | alglib.nearestneighbor.kdtreequeryresultsxy(kdTree, ref neighbours);
|
---|
209 | }
|
---|
210 | if (selfMatch) {
|
---|
211 | // weights for neighbours are 1/d.
|
---|
212 | // override distances (=0) of exact matches using 1% of the distance of the next closest non-self-match neighbour -> selfmatches weight 100x more than the next closest neighbor.
|
---|
213 | // if all k neighbours are selfmatches then they all have weight 0.01.
|
---|
214 | double minDist = dists[0] + 1;
|
---|
215 | for (int i = 0; i < numNeighbours; i++) {
|
---|
216 | if ((minDist > dists[i]) && (dists[i] != 0)) {
|
---|
217 | minDist = dists[i];
|
---|
218 | }
|
---|
219 | }
|
---|
220 | minDist /= 100.0;
|
---|
221 | for (int i = 0; i < numNeighbours; i++) {
|
---|
222 | if (dists[i] == 0) {
|
---|
223 | dists[i] = minDist;
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|
227 | double distanceWeightedValue = 0.0;
|
---|
228 | double distsSum = 0.0;
|
---|
229 | for (int i = 0; i < numNeighbours; i++) {
|
---|
230 | distanceWeightedValue += neighbours[i, columns] / dists[i];
|
---|
231 | distsSum += 1.0 / dists[i];
|
---|
232 | }
|
---|
233 | yield return distanceWeightedValue / distsSum;
|
---|
234 | }
|
---|
235 | }
|
---|
236 |
|
---|
237 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
238 | if (classValues == null) throw new InvalidOperationException("No class values are defined.");
|
---|
239 | double[,] inputData;
|
---|
240 | if (IsCompatibilityLoaded) {
|
---|
241 | inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
242 | } else {
|
---|
243 | inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
|
---|
244 | }
|
---|
245 | int n = inputData.GetLength(0);
|
---|
246 | int columns = inputData.GetLength(1);
|
---|
247 | double[] x = new double[columns];
|
---|
248 | int[] y = new int[classValues.Length];
|
---|
249 | double[] dists = new double[k];
|
---|
250 | double[,] neighbours = new double[k, columns + 1];
|
---|
251 |
|
---|
252 | for (int row = 0; row < n; row++) {
|
---|
253 | for (int column = 0; column < columns; column++) {
|
---|
254 | x[column] = inputData[row, column];
|
---|
255 | }
|
---|
256 | int numNeighbours;
|
---|
257 | lock (kdTreeLockObject) {
|
---|
258 | // gkronber: the following calls change the kdTree data structure
|
---|
259 | numNeighbours = alglib.nearestneighbor.kdtreequeryknn(kdTree, x, k, selfMatch);
|
---|
260 | alglib.nearestneighbor.kdtreequeryresultsdistances(kdTree, ref dists);
|
---|
261 | alglib.nearestneighbor.kdtreequeryresultsxy(kdTree, ref neighbours);
|
---|
262 | }
|
---|
263 | Array.Clear(y, 0, y.Length);
|
---|
264 | for (int i = 0; i < numNeighbours; i++) {
|
---|
265 | int classValue = (int)Math.Round(neighbours[i, columns]);
|
---|
266 | y[classValue]++;
|
---|
267 | }
|
---|
268 |
|
---|
269 | // find class for with the largest probability value
|
---|
270 | int maxProbClassIndex = 0;
|
---|
271 | double maxProb = y[0];
|
---|
272 | for (int i = 1; i < y.Length; i++) {
|
---|
273 | if (maxProb < y[i]) {
|
---|
274 | maxProb = y[i];
|
---|
275 | maxProbClassIndex = i;
|
---|
276 | }
|
---|
277 | }
|
---|
278 | yield return classValues[maxProbClassIndex];
|
---|
279 | }
|
---|
280 | }
|
---|
281 |
|
---|
282 |
|
---|
283 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
284 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
285 | }
|
---|
286 |
|
---|
287 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
288 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
289 |
|
---|
290 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
291 | if (regressionProblemData != null)
|
---|
292 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
293 |
|
---|
294 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
295 | if (classificationProblemData != null)
|
---|
296 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
297 |
|
---|
298 | throw new ArgumentException("The problem data is not a regression nor a classification problem data. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
299 | }
|
---|
300 |
|
---|
301 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
302 | return new NearestNeighbourRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
303 | }
|
---|
304 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
305 | return new NearestNeighbourClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
306 | }
|
---|
307 |
|
---|
308 | #region events
|
---|
309 | public event EventHandler Changed;
|
---|
310 | private void OnChanged(EventArgs e) {
|
---|
311 | var handlers = Changed;
|
---|
312 | if (handlers != null)
|
---|
313 | handlers(this, e);
|
---|
314 | }
|
---|
315 | #endregion
|
---|
316 |
|
---|
317 |
|
---|
318 | // BackwardsCompatibility3.3
|
---|
319 | #region Backwards compatible code, remove with 3.4
|
---|
320 |
|
---|
321 | private bool isCompatibilityLoaded = false; // new kNN models have the value false, kNN models loaded from disc have the value true
|
---|
322 | [Storable(DefaultValue = true)]
|
---|
323 | public bool IsCompatibilityLoaded {
|
---|
324 | get { return isCompatibilityLoaded; }
|
---|
325 | set { isCompatibilityLoaded = value; }
|
---|
326 | }
|
---|
327 | #endregion
|
---|
328 | #region persistence
|
---|
329 | [Storable]
|
---|
330 | public double KDTreeApproxF {
|
---|
331 | get { return kdTree.approxf; }
|
---|
332 | set { kdTree.approxf = value; }
|
---|
333 | }
|
---|
334 | [Storable]
|
---|
335 | public double[] KDTreeBoxMax {
|
---|
336 | get { return kdTree.boxmax; }
|
---|
337 | set { kdTree.boxmax = value; }
|
---|
338 | }
|
---|
339 | [Storable]
|
---|
340 | public double[] KDTreeBoxMin {
|
---|
341 | get { return kdTree.boxmin; }
|
---|
342 | set { kdTree.boxmin = value; }
|
---|
343 | }
|
---|
344 | [Storable]
|
---|
345 | public double[] KDTreeBuf {
|
---|
346 | get { return kdTree.buf; }
|
---|
347 | set { kdTree.buf = value; }
|
---|
348 | }
|
---|
349 | [Storable]
|
---|
350 | public double[] KDTreeCurBoxMax {
|
---|
351 | get { return kdTree.curboxmax; }
|
---|
352 | set { kdTree.curboxmax = value; }
|
---|
353 | }
|
---|
354 | [Storable]
|
---|
355 | public double[] KDTreeCurBoxMin {
|
---|
356 | get { return kdTree.curboxmin; }
|
---|
357 | set { kdTree.curboxmin = value; }
|
---|
358 | }
|
---|
359 | [Storable]
|
---|
360 | public double KDTreeCurDist {
|
---|
361 | get { return kdTree.curdist; }
|
---|
362 | set { kdTree.curdist = value; }
|
---|
363 | }
|
---|
364 | [Storable]
|
---|
365 | public int KDTreeDebugCounter {
|
---|
366 | get { return kdTree.debugcounter; }
|
---|
367 | set { kdTree.debugcounter = value; }
|
---|
368 | }
|
---|
369 | [Storable]
|
---|
370 | public int[] KDTreeIdx {
|
---|
371 | get { return kdTree.idx; }
|
---|
372 | set { kdTree.idx = value; }
|
---|
373 | }
|
---|
374 | [Storable]
|
---|
375 | public int KDTreeKCur {
|
---|
376 | get { return kdTree.kcur; }
|
---|
377 | set { kdTree.kcur = value; }
|
---|
378 | }
|
---|
379 | [Storable]
|
---|
380 | public int KDTreeKNeeded {
|
---|
381 | get { return kdTree.kneeded; }
|
---|
382 | set { kdTree.kneeded = value; }
|
---|
383 | }
|
---|
384 | [Storable]
|
---|
385 | public int KDTreeN {
|
---|
386 | get { return kdTree.n; }
|
---|
387 | set { kdTree.n = value; }
|
---|
388 | }
|
---|
389 | [Storable]
|
---|
390 | public int[] KDTreeNodes {
|
---|
391 | get { return kdTree.nodes; }
|
---|
392 | set { kdTree.nodes = value; }
|
---|
393 | }
|
---|
394 | [Storable]
|
---|
395 | public int KDTreeNormType {
|
---|
396 | get { return kdTree.normtype; }
|
---|
397 | set { kdTree.normtype = value; }
|
---|
398 | }
|
---|
399 | [Storable]
|
---|
400 | public int KDTreeNX {
|
---|
401 | get { return kdTree.nx; }
|
---|
402 | set { kdTree.nx = value; }
|
---|
403 | }
|
---|
404 | [Storable]
|
---|
405 | public int KDTreeNY {
|
---|
406 | get { return kdTree.ny; }
|
---|
407 | set { kdTree.ny = value; }
|
---|
408 | }
|
---|
409 | [Storable]
|
---|
410 | public double[] KDTreeR {
|
---|
411 | get { return kdTree.r; }
|
---|
412 | set { kdTree.r = value; }
|
---|
413 | }
|
---|
414 | [Storable]
|
---|
415 | public double KDTreeRNeeded {
|
---|
416 | get { return kdTree.rneeded; }
|
---|
417 | set { kdTree.rneeded = value; }
|
---|
418 | }
|
---|
419 | [Storable]
|
---|
420 | public bool KDTreeSelfMatch {
|
---|
421 | get { return kdTree.selfmatch; }
|
---|
422 | set { kdTree.selfmatch = value; }
|
---|
423 | }
|
---|
424 | [Storable]
|
---|
425 | public double[] KDTreeSplits {
|
---|
426 | get { return kdTree.splits; }
|
---|
427 | set { kdTree.splits = value; }
|
---|
428 | }
|
---|
429 | [Storable]
|
---|
430 | public int[] KDTreeTags {
|
---|
431 | get { return kdTree.tags; }
|
---|
432 | set { kdTree.tags = value; }
|
---|
433 | }
|
---|
434 | [Storable]
|
---|
435 | public double[] KDTreeX {
|
---|
436 | get { return kdTree.x; }
|
---|
437 | set { kdTree.x = value; }
|
---|
438 | }
|
---|
439 | [Storable]
|
---|
440 | public double[,] KDTreeXY {
|
---|
441 | get { return kdTree.xy; }
|
---|
442 | set { kdTree.xy = value; }
|
---|
443 | }
|
---|
444 | #endregion
|
---|
445 | }
|
---|
446 | }
|
---|