[5617] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5617] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[5777] | 23 | using System.Collections.Generic;
|
---|
[5617] | 24 | using System.Linq;
|
---|
[14523] | 25 | using System.Threading;
|
---|
[5617] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
[5624] | 33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
[5617] | 34 |
|
---|
| 35 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 36 | /// <summary>
|
---|
| 37 | /// Linear regression data analysis algorithm.
|
---|
| 38 | /// </summary>
|
---|
[13238] | 39 | [Item("Linear Regression (LR)", "Linear regression data analysis algorithm (wrapper for ALGLIB).")]
|
---|
[12504] | 40 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 100)]
|
---|
[5617] | 41 | [StorableClass]
|
---|
| 42 | public sealed class LinearRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
[16520] | 43 | private const string SolutionResultName = "Linear regression solution";
|
---|
| 44 | private const string ConfidenceSolutionResultName = "Solution with prediction intervals";
|
---|
[5617] | 45 |
|
---|
| 46 | [StorableConstructor]
|
---|
| 47 | private LinearRegression(bool deserializing) : base(deserializing) { }
|
---|
| 48 | private LinearRegression(LinearRegression original, Cloner cloner)
|
---|
| 49 | : base(original, cloner) {
|
---|
| 50 | }
|
---|
| 51 | public LinearRegression()
|
---|
| 52 | : base() {
|
---|
[5649] | 53 | Problem = new RegressionProblem();
|
---|
[5617] | 54 | }
|
---|
| 55 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 56 | private void AfterDeserialization() { }
|
---|
| 57 |
|
---|
| 58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 59 | return new LinearRegression(this, cloner);
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | #region linear regression
|
---|
[14523] | 63 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[5617] | 64 | double rmsError, cvRmsError;
|
---|
[16520] | 65 | // produce both solutions, to allow symbolic manipulation of LR solutions as well
|
---|
| 66 | // as the calculation of prediction intervals.
|
---|
| 67 | // There is no clean way to implement the new model class for LR as a symbolic model.
|
---|
| 68 | var solution = CreateSolution(Problem.ProblemData, out rmsError, out cvRmsError);
|
---|
| 69 | #pragma warning disable 168, 3021
|
---|
| 70 | var symbolicSolution = CreateLinearRegressionSolution(Problem.ProblemData, out rmsError, out cvRmsError);
|
---|
| 71 | #pragma warning restore 168, 3021
|
---|
| 72 | Results.Add(new Result(SolutionResultName, "The linear regression solution.", symbolicSolution));
|
---|
| 73 | Results.Add(new Result(ConfidenceSolutionResultName, "Linear regression solution with parameter covariance matrix " +
|
---|
| 74 | "and calculation of prediction intervals", solution));
|
---|
[5649] | 75 | Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the linear regression solution on the training set.", new DoubleValue(rmsError)));
|
---|
| 76 | Results.Add(new Result("Estimated root mean square error (cross-validation)", "The estimated root of the mean of squared errors of the linear regression solution via cross validation.", new DoubleValue(cvRmsError)));
|
---|
[5617] | 77 | }
|
---|
| 78 |
|
---|
[16520] | 79 | [Obsolete("Use CreateSolution() instead")]
|
---|
[5624] | 80 | public static ISymbolicRegressionSolution CreateLinearRegressionSolution(IRegressionProblemData problemData, out double rmsError, out double cvRmsError) {
|
---|
[16520] | 81 | IEnumerable<string> doubleVariables;
|
---|
| 82 | IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables;
|
---|
| 83 | double[,] inputMatrix;
|
---|
| 84 | PrepareData(problemData, out inputMatrix, out doubleVariables, out factorVariables);
|
---|
[14826] | 85 |
|
---|
[12817] | 86 | alglib.linearmodel lm = new alglib.linearmodel();
|
---|
| 87 | alglib.lrreport ar = new alglib.lrreport();
|
---|
[5617] | 88 | int nRows = inputMatrix.GetLength(0);
|
---|
| 89 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
| 90 |
|
---|
| 91 | int retVal = 1;
|
---|
| 92 | alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
|
---|
[5649] | 93 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
|
---|
[5617] | 94 | rmsError = ar.rmserror;
|
---|
| 95 | cvRmsError = ar.cvrmserror;
|
---|
| 96 |
|
---|
[16520] | 97 | double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant
|
---|
[5617] | 98 | alglib.lrunpack(lm, out coefficients, out nFeatures);
|
---|
| 99 |
|
---|
[16520] | 100 | int nFactorCoeff = factorVariables.Sum(kvp => kvp.Value.Count());
|
---|
[14843] | 101 | int nVarCoeff = doubleVariables.Count();
|
---|
| 102 | var tree = LinearModelToTreeConverter.CreateTree(factorVariables, coefficients.Take(nFactorCoeff).ToArray(),
|
---|
[15783] | 103 | doubleVariables.ToArray(), coefficients.Skip(nFactorCoeff).Take(nVarCoeff).ToArray(),
|
---|
[14843] | 104 | @const: coefficients[nFeatures]);
|
---|
[15783] | 105 |
|
---|
[14685] | 106 | SymbolicRegressionSolution solution = new SymbolicRegressionSolution(new SymbolicRegressionModel(problemData.TargetVariable, tree, new SymbolicDataAnalysisExpressionTreeLinearInterpreter()), (IRegressionProblemData)problemData.Clone());
|
---|
[6555] | 107 | solution.Model.Name = "Linear Regression Model";
|
---|
[7588] | 108 | solution.Name = "Linear Regression Solution";
|
---|
[5624] | 109 | return solution;
|
---|
[5617] | 110 | }
|
---|
[16520] | 111 |
|
---|
| 112 | public static IRegressionSolution CreateSolution(IRegressionProblemData problemData, out double rmsError, out double cvRmsError) {
|
---|
| 113 | IEnumerable<string> doubleVariables;
|
---|
| 114 | IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables;
|
---|
| 115 | double[,] inputMatrix;
|
---|
| 116 | PrepareData(problemData, out inputMatrix, out doubleVariables, out factorVariables);
|
---|
| 117 |
|
---|
| 118 | alglib.linearmodel lm = new alglib.linearmodel();
|
---|
| 119 | alglib.lrreport ar = new alglib.lrreport();
|
---|
| 120 | int nRows = inputMatrix.GetLength(0);
|
---|
| 121 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
| 122 |
|
---|
| 123 | int retVal = 1;
|
---|
| 124 | alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
|
---|
| 125 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression solution");
|
---|
| 126 | rmsError = ar.rmserror;
|
---|
| 127 | cvRmsError = ar.cvrmserror;
|
---|
| 128 |
|
---|
| 129 | // get parameters of the model
|
---|
| 130 | double[] w;
|
---|
| 131 | int nVars;
|
---|
| 132 | alglib.lrunpack(lm, out w, out nVars);
|
---|
| 133 |
|
---|
| 134 | // ar.c is the covariation matrix, array[0..NVars,0..NVars].
|
---|
| 135 | // C[i, j] = Cov(A[i], A[j])
|
---|
| 136 |
|
---|
| 137 | var solution = new LinearRegressionModel(w, ar.c, cvRmsError, problemData.TargetVariable, doubleVariables, factorVariables)
|
---|
| 138 | .CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
|
---|
| 139 | solution.Name = "Linear Regression Solution";
|
---|
| 140 | return solution;
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | private static void PrepareData(IRegressionProblemData problemData,
|
---|
| 144 | out double[,] inputMatrix,
|
---|
| 145 | out IEnumerable<string> doubleVariables,
|
---|
| 146 | out IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables) {
|
---|
| 147 | var dataset = problemData.Dataset;
|
---|
| 148 | string targetVariable = problemData.TargetVariable;
|
---|
| 149 | IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
|
---|
| 150 | IEnumerable<int> rows = problemData.TrainingIndices;
|
---|
| 151 | doubleVariables = allowedInputVariables.Where(dataset.VariableHasType<double>);
|
---|
| 152 | var factorVariableNames = allowedInputVariables.Where(dataset.VariableHasType<string>);
|
---|
| 153 | factorVariables = dataset.GetFactorVariableValues(factorVariableNames, rows);
|
---|
| 154 | double[,] binaryMatrix = dataset.ToArray(factorVariables, rows);
|
---|
| 155 | double[,] doubleVarMatrix = dataset.ToArray(doubleVariables.Concat(new string[] { targetVariable }), rows);
|
---|
| 156 | inputMatrix = binaryMatrix.HorzCat(doubleVarMatrix);
|
---|
| 157 |
|
---|
| 158 | if (inputMatrix.ContainsNanOrInfinity())
|
---|
| 159 | throw new NotSupportedException("Linear regression does not support NaN or infinity values in the input dataset.");
|
---|
| 160 | }
|
---|
[5617] | 161 | #endregion
|
---|
| 162 | }
|
---|
| 163 | }
|
---|