Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2943_MOBasicProblem_MOCMAES/HeuristicLab.Analysis/3.3/MultiObjective/GenerationalDistanceAnalyzer.cs

Last change on this file was 16310, checked in by bwerth, 6 years ago

#2943 worked on MOBasicProblem and MOAnalyzers

File size: 3.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Optimization;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Analysis {
32  [StorableClass]
33  [Item("GenerationalDistanceAnalyzer", "The generational distance between the current and the optimal front (if known)(see Multi-Objective Performance Metrics - Shodhganga for more information). The calculation of generational distance requires a known optimal pareto front")]
34  public class GenerationalDistanceAnalyzer : MultiObjectiveSuccessAnalyzer {
35    public override string ResultName => "Generational Distance";
36
37    public IFixedValueParameter<DoubleValue> DampeningParameter => (IFixedValueParameter<DoubleValue>)Parameters["Dampening"];
38
39    public double Dampening {
40      get => DampeningParameter.Value.Value;
41      set => DampeningParameter.Value.Value = value;
42    }
43
44    public ILookupParameter<DoubleMatrix> OptimalParetoFrontParameter => (ILookupParameter<DoubleMatrix>)Parameters["BestKnownFront"];
45
46
47    [StorableConstructor]
48    protected GenerationalDistanceAnalyzer(bool deserializing) : base(deserializing) { }
49    protected GenerationalDistanceAnalyzer(GenerationalDistanceAnalyzer original, Cloner cloner) : base(original, cloner) { }
50    public override IDeepCloneable Clone(Cloner cloner) {
51      return new GenerationalDistanceAnalyzer(this, cloner);
52    }
53
54    public GenerationalDistanceAnalyzer() {
55      Parameters.Add(new FixedValueParameter<DoubleValue>("Dampening", "", new DoubleValue(1)));
56      Parameters.Add(new LookupParameter<ItemArray<DoubleArray>>("OptimalParetoFront", "The analytically best known Pareto front"));
57      Parameters.Add(new ResultParameter<DoubleValue>(ResultName, "The generational distance between the current front and the optimal front", "Results", new DoubleValue(double.NaN)));
58    }
59
60    public override IOperation Apply() {
61      var qualities = QualitiesParameter.ActualValue;
62      var optimalFront = OptimalParetoFrontParameter.ActualValue;
63      if (optimalFront == null) return base.Apply();
64      var front = Enumerable.Range(0, optimalFront.Rows).Select(r => Enumerable.Range(0, optimalFront.Columns).Select(c => optimalFront[r, c]).ToList()).ToList();
65      ResultParameter.ActualValue.Value = CalculateDistance(qualities,front);
66      return base.Apply();
67    }
68
69    protected virtual double CalculateDistance(ItemArray<DoubleArray> qualities, IList<List<double>> optimalFront) {
70      return GenerationalDistanceCalculator.CalculateGenerationalDistance(qualities, optimalFront, Dampening);
71    }
72  }
73}
Note: See TracBrowser for help on using the repository browser.