#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Analysis { [StorableClass] [Item("GenerationalDistanceAnalyzer", "The generational distance between the current and the optimal front (if known)(see Multi-Objective Performance Metrics - Shodhganga for more information). The calculation of generational distance requires a known optimal pareto front")] public class GenerationalDistanceAnalyzer : MultiObjectiveSuccessAnalyzer { public override string ResultName => "Generational Distance"; public IFixedValueParameter DampeningParameter => (IFixedValueParameter)Parameters["Dampening"]; public double Dampening { get => DampeningParameter.Value.Value; set => DampeningParameter.Value.Value = value; } public ILookupParameter OptimalParetoFrontParameter => (ILookupParameter)Parameters["BestKnownFront"]; [StorableConstructor] protected GenerationalDistanceAnalyzer(bool deserializing) : base(deserializing) { } protected GenerationalDistanceAnalyzer(GenerationalDistanceAnalyzer original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new GenerationalDistanceAnalyzer(this, cloner); } public GenerationalDistanceAnalyzer() { Parameters.Add(new FixedValueParameter("Dampening", "", new DoubleValue(1))); Parameters.Add(new LookupParameter>("OptimalParetoFront", "The analytically best known Pareto front")); Parameters.Add(new ResultParameter(ResultName, "The generational distance between the current front and the optimal front", "Results", new DoubleValue(double.NaN))); } public override IOperation Apply() { var qualities = QualitiesParameter.ActualValue; var optimalFront = OptimalParetoFrontParameter.ActualValue; if (optimalFront == null) return base.Apply(); var front = Enumerable.Range(0, optimalFront.Rows).Select(r => Enumerable.Range(0, optimalFront.Columns).Select(c => optimalFront[r, c]).ToList()).ToList(); ResultParameter.ActualValue.Value = CalculateDistance(qualities,front); return base.Apply(); } protected virtual double CalculateDistance(ItemArray qualities, IList> optimalFront) { return GenerationalDistanceCalculator.CalculateGenerationalDistance(qualities, optimalFront, Dampening); } } }