#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Analysis {
[StorableClass]
[Item("GenerationalDistanceAnalyzer", "The generational distance between the current and the optimal front (if known)(see Multi-Objective Performance Metrics - Shodhganga for more information). The calculation of generational distance requires a known optimal pareto front")]
public class GenerationalDistanceAnalyzer : MultiObjectiveSuccessAnalyzer {
public override string ResultName => "Generational Distance";
public IFixedValueParameter DampeningParameter => (IFixedValueParameter)Parameters["Dampening"];
public double Dampening {
get => DampeningParameter.Value.Value;
set => DampeningParameter.Value.Value = value;
}
public ILookupParameter OptimalParetoFrontParameter => (ILookupParameter)Parameters["BestKnownFront"];
[StorableConstructor]
protected GenerationalDistanceAnalyzer(bool deserializing) : base(deserializing) { }
protected GenerationalDistanceAnalyzer(GenerationalDistanceAnalyzer original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new GenerationalDistanceAnalyzer(this, cloner);
}
public GenerationalDistanceAnalyzer() {
Parameters.Add(new FixedValueParameter("Dampening", "", new DoubleValue(1)));
Parameters.Add(new LookupParameter>("OptimalParetoFront", "The analytically best known Pareto front"));
Parameters.Add(new ResultParameter(ResultName, "The generational distance between the current front and the optimal front", "Results", new DoubleValue(double.NaN)));
}
public override IOperation Apply() {
var qualities = QualitiesParameter.ActualValue;
var optimalFront = OptimalParetoFrontParameter.ActualValue;
if (optimalFront == null) return base.Apply();
var front = Enumerable.Range(0, optimalFront.Rows).Select(r => Enumerable.Range(0, optimalFront.Columns).Select(c => optimalFront[r, c]).ToList()).ToList();
ResultParameter.ActualValue.Value = CalculateDistance(qualities,front);
return base.Apply();
}
protected virtual double CalculateDistance(ItemArray qualities, IList> optimalFront) {
return GenerationalDistanceCalculator.CalculateGenerationalDistance(qualities, optimalFront, Dampening);
}
}
}