[16268] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using System.Threading;
|
---|
| 25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 34 | using HeuristicLab.Random;
|
---|
[16329] | 35 | using System.Collections.Generic;
|
---|
[16268] | 36 |
|
---|
| 37 | namespace HeuristicLab.Problems.DynamicalSystemsModelling {
|
---|
| 38 | [Item("OdeParameterIdentification", "TODO")]
|
---|
| 39 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
|
---|
| 40 | [StorableClass]
|
---|
| 41 | public sealed class OdeParameterIdentification : FixedDataAnalysisAlgorithm<Problem> {
|
---|
| 42 | private const string RegressionSolutionResultName = "Regression solution";
|
---|
| 43 | private const string ModelStructureParameterName = "Model structure";
|
---|
| 44 | private const string IterationsParameterName = "Iterations";
|
---|
| 45 | private const string RestartsParameterName = "Restarts";
|
---|
| 46 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 47 | private const string SeedParameterName = "Seed";
|
---|
| 48 | private const string InitParamsRandomlyParameterName = "InitializeParametersRandomly";
|
---|
| 49 |
|
---|
| 50 | public IValueParameter<StringArray> ModelStructureParameter {
|
---|
| 51 | get { return (IValueParameter<StringArray>)Parameters[ModelStructureParameterName]; }
|
---|
| 52 | }
|
---|
| 53 | public IFixedValueParameter<IntValue> IterationsParameter {
|
---|
| 54 | get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 58 | get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
| 62 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | public IFixedValueParameter<IntValue> RestartsParameter {
|
---|
| 66 | get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | public IFixedValueParameter<BoolValue> InitParametersRandomlyParameter {
|
---|
| 70 | get { return (IFixedValueParameter<BoolValue>)Parameters[InitParamsRandomlyParameterName]; }
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | public StringArray ModelStructure {
|
---|
| 74 | get { return ModelStructureParameter.Value; }
|
---|
| 75 | set { ModelStructureParameter.Value = value; }
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | public int Iterations {
|
---|
| 79 | get { return IterationsParameter.Value.Value; }
|
---|
| 80 | set { IterationsParameter.Value.Value = value; }
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | public int Restarts {
|
---|
| 84 | get { return RestartsParameter.Value.Value; }
|
---|
| 85 | set { RestartsParameter.Value.Value = value; }
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public int Seed {
|
---|
| 89 | get { return SeedParameter.Value.Value; }
|
---|
| 90 | set { SeedParameter.Value.Value = value; }
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | public bool SetSeedRandomly {
|
---|
| 94 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 95 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | public bool InitializeParametersRandomly {
|
---|
| 99 | get { return InitParametersRandomlyParameter.Value.Value; }
|
---|
| 100 | set { InitParametersRandomlyParameter.Value.Value = value; }
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | [StorableConstructor]
|
---|
| 104 | private OdeParameterIdentification(bool deserializing) : base(deserializing) { }
|
---|
| 105 | private OdeParameterIdentification(OdeParameterIdentification original, Cloner cloner)
|
---|
| 106 | : base(original, cloner) {
|
---|
| 107 | }
|
---|
| 108 | public OdeParameterIdentification()
|
---|
| 109 | : base() {
|
---|
| 110 | Problem = new Problem();
|
---|
| 111 | Parameters.Add(new ValueParameter<StringArray>(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringArray(new string[] { "1.0 * x*x + 0.0" })));
|
---|
| 112 | Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
|
---|
| 113 | Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of independent random restarts (>0)", new IntValue(10)));
|
---|
| 114 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The PRNG seed value.", new IntValue()));
|
---|
| 115 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
|
---|
| 116 | Parameters.Add(new FixedValueParameter<BoolValue>(InitParamsRandomlyParameterName, "Switch to determine if the real-valued model parameters should be initialized randomly in each restart.", new BoolValue(false)));
|
---|
| 117 |
|
---|
| 118 | SetParameterHiddenState();
|
---|
| 119 |
|
---|
| 120 | InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
|
---|
| 121 | SetParameterHiddenState();
|
---|
| 122 | };
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | private void SetParameterHiddenState() {
|
---|
| 126 | var hide = !InitializeParametersRandomly;
|
---|
| 127 | RestartsParameter.Hidden = hide;
|
---|
| 128 | SeedParameter.Hidden = hide;
|
---|
| 129 | SetSeedRandomlyParameter.Hidden = hide;
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 133 | private void AfterDeserialization() {
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 137 | return new OdeParameterIdentification(this, cloner);
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | #region nonlinear regression
|
---|
| 141 | protected override void Run(CancellationToken cancellationToken) {
|
---|
| 142 | IRegressionSolution bestSolution = null;
|
---|
| 143 | if (SetSeedRandomly) Seed = (new System.Random()).Next();
|
---|
| 144 | var rand = new MersenneTwister((uint)Seed);
|
---|
| 145 | if (InitializeParametersRandomly) {
|
---|
| 146 | throw new NotImplementedException();
|
---|
| 147 | // var qualityTable = new DataTable("RMSE table");
|
---|
| 148 | // qualityTable.VisualProperties.YAxisLogScale = true;
|
---|
| 149 | // var trainRMSERow = new DataRow("RMSE (train)");
|
---|
| 150 | // trainRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
| 151 | // var testRMSERow = new DataRow("RMSE test");
|
---|
| 152 | // testRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
| 153 | //
|
---|
| 154 | // qualityTable.Rows.Add(trainRMSERow);
|
---|
| 155 | // qualityTable.Rows.Add(testRMSERow);
|
---|
| 156 | // Results.Add(new Result(qualityTable.Name, qualityTable.Name + " for all restarts", qualityTable));
|
---|
| 157 |
|
---|
| 158 | // CreateSolution(Problem, ModelStructure.ToArray(), Iterations, rand);
|
---|
| 159 | //
|
---|
| 160 | // for (int r = 0; r < Restarts; r++) {
|
---|
| 161 | // CreateSolution(Problem, ModelStructure.ToArray(), Iterations, rand);
|
---|
| 162 | // trainRMSERow.Values.Add(solution.TrainingRootMeanSquaredError);
|
---|
| 163 | // testRMSERow.Values.Add(solution.TestRootMeanSquaredError);
|
---|
| 164 | // if (solution.TrainingRootMeanSquaredError < bestSolution.TrainingRootMeanSquaredError) {
|
---|
| 165 | // bestSolution = solution;
|
---|
| 166 | // }
|
---|
| 167 | // }
|
---|
| 168 | } else {
|
---|
| 169 | CreateSolution(Problem, ModelStructure.ToArray(), Iterations, rand);
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | // Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", bestSolution));
|
---|
| 173 | // Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(bestSolution.TrainingRootMeanSquaredError)));
|
---|
| 174 | // Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(bestSolution.TestRootMeanSquaredError)));
|
---|
| 175 |
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | public void CreateSolution(Problem problem, string[] modelStructure, int maxIterations, IRandom rand) {
|
---|
| 179 | var parser = new InfixExpressionParser();
|
---|
| 180 | var trees = modelStructure.Select(expr => Convert(parser.Parse(expr))).ToArray();
|
---|
| 181 | var names = problem.Encoding.Encodings.Select(enc => enc.Name).ToArray();
|
---|
| 182 | if (trees.Length != names.Length) throw new ArgumentException("The number of expressions must match the number of target variables exactly");
|
---|
| 183 |
|
---|
| 184 | var scope = new Scope();
|
---|
| 185 | for (int i = 0; i < names.Length; i++) {
|
---|
| 186 | scope.Variables.Add(new Core.Variable(names[i], trees[i]));
|
---|
| 187 | }
|
---|
| 188 | var ind = problem.Encoding.GetIndividual(scope);
|
---|
| 189 | var quality = problem.Evaluate(ind, rand);
|
---|
| 190 | problem.Analyze(new[] { ind }, new[] { quality }, Results, rand);
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | private ISymbolicExpressionTree Convert(ISymbolicExpressionTree tree) {
|
---|
| 194 | return new SymbolicExpressionTree(Convert(tree.Root));
|
---|
| 195 | }
|
---|
| 196 |
|
---|
[16329] | 197 |
|
---|
| 198 | // for translation from symbolic expressions to simple symbols
|
---|
| 199 | private static Dictionary<Type, string> sym2str = new Dictionary<Type, string>() {
|
---|
| 200 | {typeof(Addition), "+" },
|
---|
| 201 | {typeof(Subtraction), "-" },
|
---|
| 202 | {typeof(Multiplication), "*" },
|
---|
| 203 | {typeof(Sine), "sin" },
|
---|
| 204 | {typeof(Cosine), "cos" },
|
---|
| 205 | {typeof(Square), "sqr" },
|
---|
| 206 | };
|
---|
| 207 |
|
---|
[16268] | 208 | private ISymbolicExpressionTreeNode Convert(ISymbolicExpressionTreeNode node) {
|
---|
[16329] | 209 | if (sym2str.ContainsKey(node.Symbol.GetType())) {
|
---|
| 210 | var children = node.Subtrees.Select(st => Convert(st)).ToArray();
|
---|
| 211 | return Make(sym2str[node.Symbol.GetType()], children);
|
---|
| 212 | } else if (node.Symbol is ProgramRootSymbol) {
|
---|
[16268] | 213 | var child = Convert(node.GetSubtree(0));
|
---|
| 214 | node.RemoveSubtree(0);
|
---|
| 215 | node.AddSubtree(child);
|
---|
| 216 | return node;
|
---|
| 217 | } else if (node.Symbol is StartSymbol) {
|
---|
| 218 | var child = Convert(node.GetSubtree(0));
|
---|
| 219 | node.RemoveSubtree(0);
|
---|
| 220 | node.AddSubtree(child);
|
---|
| 221 | return node;
|
---|
| 222 | } else if (node.Symbol is Division) {
|
---|
| 223 | var children = node.Subtrees.Select(st => Convert(st)).ToArray();
|
---|
| 224 | if (children.Length == 1) {
|
---|
| 225 | return Make("%", new[] { new SimpleSymbol("θ", 0).CreateTreeNode(), children[0] });
|
---|
| 226 | } else if (children.Length != 2) throw new ArgumentException("Division is not supported for multiple arguments");
|
---|
| 227 | else return Make("%", children);
|
---|
| 228 | } else if (node.Symbol is Constant) {
|
---|
| 229 | return new SimpleSymbol("θ", 0).CreateTreeNode();
|
---|
| 230 | } else if (node.Symbol is DataAnalysis.Symbolic.Variable) {
|
---|
| 231 | var varNode = node as VariableTreeNode;
|
---|
| 232 | if (!varNode.Weight.IsAlmost(1.0)) throw new ArgumentException("Variable weights are not supported");
|
---|
| 233 | return new SimpleSymbol(varNode.VariableName, 0).CreateTreeNode();
|
---|
| 234 | } else throw new ArgumentException("Unsupported symbol: " + node.Symbol.Name);
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | private ISymbolicExpressionTreeNode Make(string op, ISymbolicExpressionTreeNode[] children) {
|
---|
[16329] | 238 | if (children.Length == 1) {
|
---|
| 239 | var s = new SimpleSymbol(op, 1).CreateTreeNode();
|
---|
| 240 | s.AddSubtree(children.First());
|
---|
| 241 | return s;
|
---|
| 242 | } else {
|
---|
| 243 | var s = new SimpleSymbol(op, 2).CreateTreeNode();
|
---|
| 244 | var c0 = children[0];
|
---|
| 245 | var c1 = children[1];
|
---|
| 246 | s.AddSubtree(c0);
|
---|
| 247 | s.AddSubtree(c1);
|
---|
| 248 | for (int i = 2; i < children.Length; i++) {
|
---|
| 249 | var sn = new SimpleSymbol(op, 2).CreateTreeNode();
|
---|
| 250 | sn.AddSubtree(s);
|
---|
| 251 | sn.AddSubtree(children[i]);
|
---|
| 252 | s = sn;
|
---|
| 253 | }
|
---|
| 254 | return s;
|
---|
[16268] | 255 | }
|
---|
| 256 | }
|
---|
| 257 | #endregion
|
---|
| 258 | }
|
---|
| 259 | }
|
---|