Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DynamicalSystemsModelling/3.3/OdeParameterIdentification.cs @ 16386

Last change on this file since 16386 was 16329, checked in by gkronber, 6 years ago

#2925: made several extensions in relation to blood glucose prediction

  • added sqr function,
  • added outputs for latent variables (linechart and model),
  • added optimization of initial values for latent variables (for each episode separately)
  • TODO: test with CVODES (so far only our own integration scheme has been tested)
File size: 11.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using System.Threading;
25using HeuristicLab.Algorithms.DataAnalysis;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Problems.DataAnalysis;
33using HeuristicLab.Problems.DataAnalysis.Symbolic;
34using HeuristicLab.Random;
35using System.Collections.Generic;
36
37namespace HeuristicLab.Problems.DynamicalSystemsModelling {
38  [Item("OdeParameterIdentification", "TODO")]
39  [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
40  [StorableClass]
41  public sealed class OdeParameterIdentification : FixedDataAnalysisAlgorithm<Problem> {
42    private const string RegressionSolutionResultName = "Regression solution";
43    private const string ModelStructureParameterName = "Model structure";
44    private const string IterationsParameterName = "Iterations";
45    private const string RestartsParameterName = "Restarts";
46    private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
47    private const string SeedParameterName = "Seed";
48    private const string InitParamsRandomlyParameterName = "InitializeParametersRandomly";
49
50    public IValueParameter<StringArray> ModelStructureParameter {
51      get { return (IValueParameter<StringArray>)Parameters[ModelStructureParameterName]; }
52    }
53    public IFixedValueParameter<IntValue> IterationsParameter {
54      get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
55    }
56
57    public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
58      get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
59    }
60
61    public IFixedValueParameter<IntValue> SeedParameter {
62      get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
63    }
64
65    public IFixedValueParameter<IntValue> RestartsParameter {
66      get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
67    }
68
69    public IFixedValueParameter<BoolValue> InitParametersRandomlyParameter {
70      get { return (IFixedValueParameter<BoolValue>)Parameters[InitParamsRandomlyParameterName]; }
71    }
72
73    public StringArray ModelStructure {
74      get { return ModelStructureParameter.Value; }
75      set { ModelStructureParameter.Value = value; }
76    }
77
78    public int Iterations {
79      get { return IterationsParameter.Value.Value; }
80      set { IterationsParameter.Value.Value = value; }
81    }
82
83    public int Restarts {
84      get { return RestartsParameter.Value.Value; }
85      set { RestartsParameter.Value.Value = value; }
86    }
87
88    public int Seed {
89      get { return SeedParameter.Value.Value; }
90      set { SeedParameter.Value.Value = value; }
91    }
92
93    public bool SetSeedRandomly {
94      get { return SetSeedRandomlyParameter.Value.Value; }
95      set { SetSeedRandomlyParameter.Value.Value = value; }
96    }
97
98    public bool InitializeParametersRandomly {
99      get { return InitParametersRandomlyParameter.Value.Value; }
100      set { InitParametersRandomlyParameter.Value.Value = value; }
101    }
102
103    [StorableConstructor]
104    private OdeParameterIdentification(bool deserializing) : base(deserializing) { }
105    private OdeParameterIdentification(OdeParameterIdentification original, Cloner cloner)
106      : base(original, cloner) {
107    }
108    public OdeParameterIdentification()
109      : base() {
110      Problem = new Problem();
111      Parameters.Add(new ValueParameter<StringArray>(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringArray(new string[] { "1.0 * x*x + 0.0" })));
112      Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
113      Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of independent random restarts (>0)", new IntValue(10)));
114      Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The PRNG seed value.", new IntValue()));
115      Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
116      Parameters.Add(new FixedValueParameter<BoolValue>(InitParamsRandomlyParameterName, "Switch to determine if the real-valued model parameters should be initialized randomly in each restart.", new BoolValue(false)));
117
118      SetParameterHiddenState();
119
120      InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
121        SetParameterHiddenState();
122      };
123    }
124
125    private void SetParameterHiddenState() {
126      var hide = !InitializeParametersRandomly;
127      RestartsParameter.Hidden = hide;
128      SeedParameter.Hidden = hide;
129      SetSeedRandomlyParameter.Hidden = hide;
130    }
131
132    [StorableHook(HookType.AfterDeserialization)]
133    private void AfterDeserialization() {
134    }
135
136    public override IDeepCloneable Clone(Cloner cloner) {
137      return new OdeParameterIdentification(this, cloner);
138    }
139
140    #region nonlinear regression
141    protected override void Run(CancellationToken cancellationToken) {
142      IRegressionSolution bestSolution = null;
143      if (SetSeedRandomly) Seed = (new System.Random()).Next();
144      var rand = new MersenneTwister((uint)Seed);
145      if (InitializeParametersRandomly) {
146        throw new NotImplementedException();
147        // var qualityTable = new DataTable("RMSE table");
148        // qualityTable.VisualProperties.YAxisLogScale = true;
149        // var trainRMSERow = new DataRow("RMSE (train)");
150        // trainRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
151        // var testRMSERow = new DataRow("RMSE test");
152        // testRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
153        //
154        // qualityTable.Rows.Add(trainRMSERow);
155        // qualityTable.Rows.Add(testRMSERow);
156        // Results.Add(new Result(qualityTable.Name, qualityTable.Name + " for all restarts", qualityTable));
157
158        // CreateSolution(Problem, ModelStructure.ToArray(), Iterations, rand);
159        //
160        // for (int r = 0; r < Restarts; r++) {
161        //   CreateSolution(Problem, ModelStructure.ToArray(), Iterations, rand);
162        //   trainRMSERow.Values.Add(solution.TrainingRootMeanSquaredError);
163        //   testRMSERow.Values.Add(solution.TestRootMeanSquaredError);
164        //   if (solution.TrainingRootMeanSquaredError < bestSolution.TrainingRootMeanSquaredError) {
165        //     bestSolution = solution;
166        //   }
167        // }
168      } else {
169        CreateSolution(Problem, ModelStructure.ToArray(), Iterations, rand);
170      }
171
172      // Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", bestSolution));
173      // Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(bestSolution.TrainingRootMeanSquaredError)));
174      // Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(bestSolution.TestRootMeanSquaredError)));
175
176    }
177
178    public void CreateSolution(Problem problem, string[] modelStructure, int maxIterations, IRandom rand) {
179      var parser = new InfixExpressionParser();
180      var trees = modelStructure.Select(expr => Convert(parser.Parse(expr))).ToArray();
181      var names = problem.Encoding.Encodings.Select(enc => enc.Name).ToArray();
182      if (trees.Length != names.Length) throw new ArgumentException("The number of expressions must match the number of target variables exactly");
183
184      var scope = new Scope();
185      for (int i = 0; i < names.Length; i++) {
186        scope.Variables.Add(new Core.Variable(names[i], trees[i]));
187      }
188      var ind = problem.Encoding.GetIndividual(scope);
189      var quality = problem.Evaluate(ind, rand);
190      problem.Analyze(new[] { ind }, new[] { quality }, Results, rand);
191    }
192
193    private ISymbolicExpressionTree Convert(ISymbolicExpressionTree tree) {
194      return new SymbolicExpressionTree(Convert(tree.Root));
195    }
196
197
198    // for translation from symbolic expressions to simple symbols
199    private static Dictionary<Type, string> sym2str = new Dictionary<Type, string>() {
200      {typeof(Addition), "+" },
201      {typeof(Subtraction), "-" },
202      {typeof(Multiplication), "*" },
203      {typeof(Sine), "sin" },
204      {typeof(Cosine), "cos" },
205      {typeof(Square), "sqr" },
206    };
207
208    private ISymbolicExpressionTreeNode Convert(ISymbolicExpressionTreeNode node) {
209      if (sym2str.ContainsKey(node.Symbol.GetType())) {
210        var children = node.Subtrees.Select(st => Convert(st)).ToArray();
211        return Make(sym2str[node.Symbol.GetType()], children);
212      } else if (node.Symbol is ProgramRootSymbol) {
213        var child = Convert(node.GetSubtree(0));
214        node.RemoveSubtree(0);
215        node.AddSubtree(child);
216        return node;
217      } else if (node.Symbol is StartSymbol) {
218        var child = Convert(node.GetSubtree(0));
219        node.RemoveSubtree(0);
220        node.AddSubtree(child);
221        return node;
222      } else if (node.Symbol is Division) {
223        var children = node.Subtrees.Select(st => Convert(st)).ToArray();
224        if (children.Length == 1) {
225          return Make("%", new[] { new SimpleSymbol("θ", 0).CreateTreeNode(), children[0] });
226        } else if (children.Length != 2) throw new ArgumentException("Division is not supported for multiple arguments");
227        else return Make("%", children);
228      } else if (node.Symbol is Constant) {
229        return new SimpleSymbol("θ", 0).CreateTreeNode();
230      } else if (node.Symbol is DataAnalysis.Symbolic.Variable) {
231        var varNode = node as VariableTreeNode;
232        if (!varNode.Weight.IsAlmost(1.0)) throw new ArgumentException("Variable weights are not supported");
233        return new SimpleSymbol(varNode.VariableName, 0).CreateTreeNode();
234      } else throw new ArgumentException("Unsupported symbol: " + node.Symbol.Name);
235    }
236
237    private ISymbolicExpressionTreeNode Make(string op, ISymbolicExpressionTreeNode[] children) {
238      if (children.Length == 1) {
239        var s = new SimpleSymbol(op, 1).CreateTreeNode();
240        s.AddSubtree(children.First());
241        return s;
242      } else {
243        var s = new SimpleSymbol(op, 2).CreateTreeNode();
244        var c0 = children[0];
245        var c1 = children[1];
246        s.AddSubtree(c0);
247        s.AddSubtree(c1);
248        for (int i = 2; i < children.Length; i++) {
249          var sn = new SimpleSymbol(op, 2).CreateTreeNode();
250          sn.AddSubtree(s);
251          sn.AddSubtree(children[i]);
252          s = sn;
253        }
254        return s;
255      }
256    }
257    #endregion
258  }
259}
Note: See TracBrowser for help on using the repository browser.