Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2915-AbsoluteSymbol/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Hashing/SymbolicExpressionTreeHash.cs @ 16304

Last change on this file since 16304 was 16304, checked in by lkammere, 6 years ago

#2915: Merge changes in the trunk to current HEAD into the branch.

File size: 14.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
25using static HeuristicLab.Problems.DataAnalysis.Symbolic.SymbolicExpressionHashExtensions;
26
27namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
28  public static class SymbolicExpressionTreeHash {
29    private static readonly Addition add = new Addition();
30    private static readonly Subtraction sub = new Subtraction();
31    private static readonly Multiplication mul = new Multiplication();
32    private static readonly Division div = new Division();
33    private static readonly Logarithm log = new Logarithm();
34    private static readonly Exponential exp = new Exponential();
35    private static readonly Sine sin = new Sine();
36    private static readonly Cosine cos = new Cosine();
37    private static readonly Constant constant = new Constant();
38
39    private static readonly ISymbolicExpressionTreeNodeComparer comparer = new SymbolicExpressionTreeNodeComparer();
40
41    public static ulong ComputeHash(this ISymbolicExpressionTree tree) {
42      return ComputeHash(tree.Root.GetSubtree(0).GetSubtree(0));
43    }
44
45    public static double ComputeSimilarity(ISymbolicExpressionTree t1, ISymbolicExpressionTree t2, bool simplify = false) {
46      return ComputeSimilarity(t1.Root.GetSubtree(0).GetSubtree(0), t2.Root.GetSubtree(0).GetSubtree(0), simplify);
47    }
48
49    public static double ComputeSimilarity(ISymbolicExpressionTreeNode t1, ISymbolicExpressionTreeNode t2, bool simplify = false) {
50      HashNode<ISymbolicExpressionTreeNode>[] lhs;
51      HashNode<ISymbolicExpressionTreeNode>[] rhs;
52
53      ulong hashFunction(byte[] input) => HashUtil.DJBHash(input);
54
55      if (simplify) {
56        lhs = t1.MakeNodes().Simplify(hashFunction);
57        rhs = t2.MakeNodes().Simplify(hashFunction);
58      } else {
59        lhs = t1.MakeNodes().Sort(hashFunction); // sort calculates hash values
60        rhs = t2.MakeNodes().Sort(hashFunction);
61      }
62
63      var lh = lhs.Select(x => x.CalculatedHashValue).ToArray();
64      var rh = rhs.Select(x => x.CalculatedHashValue).ToArray();
65
66      Array.Sort(lh);
67      Array.Sort(rh);
68
69      return ComputeSimilarity(lh, rh);
70    }
71
72    // this will only work if lh and rh are sorted
73    private static double ComputeSimilarity(ulong[] lh, ulong[] rh) {
74      double count = 0;
75      for (int i = 0, j = 0; i < lh.Length && j < rh.Length;) {
76        var h1 = lh[i];
77        var h2 = rh[j];
78        if (h1 == h2) {
79          ++count;
80          ++i;
81          ++j;
82        } else if (h1 < h2) {
83          ++i;
84        } else if (h1 > h2) {
85          ++j;
86        }
87      }
88
89      return 2d * count / (lh.Length + rh.Length);
90    }
91
92    public static double ComputeAverageSimilarity(ISymbolicExpressionTree[] trees, bool simplify = false, bool strict = false) {
93      var total = (double)trees.Length * (trees.Length - 1) / 2;
94      double avg = 0;
95      var hashes = new ulong[trees.Length][];
96      // build hash arrays
97      for (int i = 0; i < trees.Length; ++i) {
98        var nodes = trees[i].MakeNodes(strict);
99        hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray();
100        Array.Sort(hashes[i]);
101      }
102      // compute similarity matrix
103      for (int i = 0; i < trees.Length - 1; ++i) {
104        for (int j = i + 1; j < trees.Length; ++j) {
105          avg += ComputeSimilarity(hashes[i], hashes[j]);
106        }
107      }
108      return avg / total;
109    }
110
111    public static double[,] ComputeSimilarityMatrix(ISymbolicExpressionTree[] trees, bool simplify = false, bool strict = false) {
112      var sim = new double[trees.Length, trees.Length];
113      var hashes = new ulong[trees.Length][];
114      // build hash arrays
115      for (int i = 0; i < trees.Length; ++i) {
116        var nodes = trees[i].MakeNodes(strict);
117        hashes[i] = (simplify ? nodes.Simplify(HashUtil.DJBHash) : nodes.Sort(HashUtil.DJBHash)).Select(x => x.CalculatedHashValue).ToArray();
118        Array.Sort(hashes[i]);
119      }
120      // compute similarity matrix
121      for (int i = 0; i < trees.Length - 1; ++i) {
122        for (int j = i + 1; j < trees.Length; ++j) {
123          sim[i, j] = sim[j, i] = ComputeSimilarity(hashes[i], hashes[j]);
124        }
125      }
126      return sim;
127    }
128
129    public static ulong ComputeHash(this ISymbolicExpressionTreeNode treeNode, bool strict = false) {
130      ulong hashFunction(byte[] input) => HashUtil.JSHash(input);
131      var hashNodes = treeNode.MakeNodes(strict);
132      var simplified = hashNodes.Simplify(hashFunction);
133      return simplified.Last().CalculatedHashValue;
134    }
135
136    public static HashNode<ISymbolicExpressionTreeNode> ToHashNode(this ISymbolicExpressionTreeNode node, bool strict = false) {
137      var symbol = node.Symbol;
138      var name = symbol.Name;
139      if (node is ConstantTreeNode constantNode) {
140        name = strict ? constantNode.Value.ToString() : symbol.Name;
141      } else if (node is VariableTreeNode variableNode) {
142        name = strict ? variableNode.Weight.ToString() + variableNode.VariableName : variableNode.VariableName;
143      }
144      var hash = (ulong)name.GetHashCode();
145      var hashNode = new HashNode<ISymbolicExpressionTreeNode>(comparer) {
146        Data = node,
147        Arity = node.SubtreeCount,
148        Size = node.SubtreeCount,
149        IsCommutative = node.Symbol is Addition || node.Symbol is Multiplication,
150        Enabled = true,
151        HashValue = hash,
152        CalculatedHashValue = hash
153      };
154      if (symbol is Addition) {
155        hashNode.Simplify = SimplifyAddition;
156      } else if (symbol is Multiplication) {
157        hashNode.Simplify = SimplifyMultiplication;
158      } else if (symbol is Division) {
159        hashNode.Simplify = SimplifyDivision;
160      } else if (symbol is Logarithm || symbol is Exponential || symbol is Sine || symbol is Cosine) {
161        hashNode.Simplify = SimplifyUnaryNode;
162      } else if (symbol is Subtraction) {
163        hashNode.Simplify = SimplifyBinaryNode;
164      }
165      return hashNode;
166    }
167
168    public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTree tree, bool strict = false) {
169      return MakeNodes(tree.Root.GetSubtree(0).GetSubtree(0), strict);
170    }
171
172    public static HashNode<ISymbolicExpressionTreeNode>[] MakeNodes(this ISymbolicExpressionTreeNode node, bool strict = false) {
173      return node.IterateNodesPostfix().Select(x => x.ToHashNode(strict)).ToArray().UpdateNodeSizes();
174    }
175
176    #region parse a nodes array back into a tree
177    public static ISymbolicExpressionTree ToTree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
178      var root = new ProgramRootSymbol().CreateTreeNode();
179      var start = new StartSymbol().CreateTreeNode();
180      root.AddSubtree(start);
181      start.AddSubtree(nodes.ToSubtree());
182      return new SymbolicExpressionTree(root);
183    }
184
185    public static ISymbolicExpressionTreeNode ToSubtree(this HashNode<ISymbolicExpressionTreeNode>[] nodes) {
186      var treeNodes = nodes.Select(x => x.Data.Symbol.CreateTreeNode()).ToArray();
187
188      for (int i = nodes.Length - 1; i >= 0; --i) {
189        var node = nodes[i];
190
191        if (node.IsLeaf) {
192          if (node.Data is VariableTreeNode variable) {
193            var variableTreeNode = (VariableTreeNode)treeNodes[i];
194            variableTreeNode.VariableName = variable.VariableName;
195            variableTreeNode.Weight = variable.Weight;
196          } else if (node.Data is ConstantTreeNode @const) {
197            var constantTreeNode = (ConstantTreeNode)treeNodes[i];
198            constantTreeNode.Value = @const.Value;
199          }
200          continue;
201        }
202
203        var treeNode = treeNodes[i];
204
205        foreach (var j in nodes.IterateChildren(i)) {
206          treeNode.AddSubtree(treeNodes[j]);
207        }
208      }
209
210      return treeNodes.Last();
211    }
212
213    private static T CreateTreeNode<T>(this ISymbol symbol) where T : class, ISymbolicExpressionTreeNode {
214      return (T)symbol.CreateTreeNode();
215    }
216    #endregion
217
218    #region tree simplification
219    // these simplification methods rely on the assumption that child nodes of the current node have already been simplified
220    // (in other words simplification should be applied in a bottom-up fashion)
221    public static ISymbolicExpressionTree Simplify(ISymbolicExpressionTree tree) {
222      ulong hashFunction(byte[] bytes) => HashUtil.JSHash(bytes);
223      var root = tree.Root.GetSubtree(0).GetSubtree(0);
224      var nodes = root.MakeNodes();
225      var simplified = nodes.Simplify(hashFunction);
226      return simplified.ToTree();
227    }
228
229    public static void SimplifyAddition(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
230      // simplify additions of terms by eliminating terms with the same symbol and hash
231      var children = nodes.IterateChildren(i);
232
233      var curr = children[0];
234      var node = nodes[i];
235
236      foreach (var j in children.Skip(1)) {
237        if (nodes[j] == nodes[curr]) {
238          for (int k = j - nodes[j].Size; k <= j; ++k) {
239            nodes[k].Enabled = false;
240          }
241          node.Arity--;
242        } else {
243          curr = j;
244        }
245      }
246      if (node.Arity == 1) { // if the arity is 1 we don't need the addition node at all
247        node.Enabled = false;
248      }
249    }
250
251    // simplify multiplications by reducing constants and div terms 
252    public static void SimplifyMultiplication(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
253      var node = nodes[i];
254      var children = nodes.IterateChildren(i);
255
256      for (int j = 0; j < children.Length; ++j) {
257        var c = children[j];
258        var child = nodes[c];
259
260        if (!child.Enabled)
261          continue;
262
263        var symbol = child.Data.Symbol;
264        if (symbol is Constant) {
265          for (int k = j + 1; k < children.Length; ++k) {
266            var d = children[k];
267            if (nodes[d].Data.Symbol is Constant) {
268              nodes[d].Enabled = false;
269              node.Arity--;
270            } else {
271              break;
272            }
273          }
274        } else if (symbol is Division) {
275          var div = nodes[c];
276          var denominator =
277            div.Arity == 1 ?
278            nodes[c - 1] :                    // 1 / x is expressed as div(x) (with a single child)
279            nodes[c - nodes[c - 1].Size - 2]; // assume division always has arity 1 or 2
280
281          foreach (var d in children) {
282            if (nodes[d].Enabled && nodes[d] == denominator) {
283              nodes[c].Enabled = nodes[d].Enabled = denominator.Enabled = false;
284              node.Arity -= 2; // matching child + division node
285              break;
286            }
287          }
288        }
289
290        if (node.Arity == 0) { // if everything is simplified this node becomes constant
291          var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
292          constantTreeNode.Value = 1;
293          nodes[i] = constantTreeNode.ToHashNode();
294        } else if (node.Arity == 1) { // when i have only 1 arg left i can skip this node
295          node.Enabled = false;
296        }
297      }
298    }
299
300    public static void SimplifyDivision(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
301      var node = nodes[i];
302      var children = nodes.IterateChildren(i);
303
304      if (children.All(x => nodes[x].Data.Symbol is Constant)) {
305        var v = ((ConstantTreeNode)nodes[children.First()].Data).Value;
306        if (node.Arity == 1) {
307          v = 1 / v;
308        } else if (node.Arity > 1) {
309          foreach (var j in children.Skip(1)) {
310            v /= ((ConstantTreeNode)nodes[j].Data).Value;
311          }
312        }
313        var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
314        constantTreeNode.Value = v;
315        nodes[i] = constantTreeNode.ToHashNode();
316        return;
317      }
318
319      var nominator = nodes[children[0]];
320      foreach (var j in children.Skip(1)) {
321        var denominator = nodes[j];
322        if (nominator == denominator) {
323          // disable all the children of the division node (nominator and children + denominator and children)
324          nominator.Enabled = denominator.Enabled = false;
325          node.Arity -= 2; // nominator + denominator
326        }
327        if (node.Arity == 0) {
328          var constantTreeNode = constant.CreateTreeNode<ConstantTreeNode>();
329          constantTreeNode.Value = 1; // x / x = 1
330          nodes[i] = constantTreeNode.ToHashNode();
331        }
332      }
333    }
334
335    public static void SimplifyUnaryNode(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
336      // check if the child of the unary node is a constant, then the whole node can be simplified
337      var parent = nodes[i];
338      var child = nodes[i - 1];
339
340      var parentSymbol = parent.Data.Symbol;
341      var childSymbol = child.Data.Symbol;
342
343      if (childSymbol is Constant) {
344        nodes[i].Enabled = false;
345      } else if ((parentSymbol is Exponential && childSymbol is Logarithm) || (parentSymbol is Logarithm && childSymbol is Exponential)) {
346        child.Enabled = parent.Enabled = false;
347      }
348    }
349
350    public static void SimplifyBinaryNode(HashNode<ISymbolicExpressionTreeNode>[] nodes, int i) {
351      var children = nodes.IterateChildren(i);
352      if (children.All(x => nodes[x].Data.Symbol is Constant)) {
353        foreach (var j in children) {
354          nodes[j].Enabled = false;
355        }
356        nodes[i] = constant.CreateTreeNode().ToHashNode();
357      }
358    }
359    #endregion
360  }
361}
Note: See TracBrowser for help on using the repository browser.