1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Problems.VehicleRouting.Encodings.Potvin {
|
---|
28 |
|
---|
29 | public class KMeansAlgorithm<TData> where TData : class {
|
---|
30 |
|
---|
31 | private class ClusterInfo {
|
---|
32 | public TData Mean;
|
---|
33 | public double Variance;
|
---|
34 | public int Size;
|
---|
35 | }
|
---|
36 |
|
---|
37 | private readonly Func<List<TData>, TData> meanCalculator;
|
---|
38 | private readonly Func<TData, TData, double> distanceCalculator;
|
---|
39 |
|
---|
40 | public KMeansAlgorithm(Func<List<TData>, TData> meanCalculator, Func<TData, TData, double> distanceCalculator) {
|
---|
41 | this.meanCalculator = meanCalculator;
|
---|
42 | this.distanceCalculator = distanceCalculator;
|
---|
43 | }
|
---|
44 |
|
---|
45 | public List<List<int>> Run(List<TData> data, int k, double changeThreshold, IRandom random) {
|
---|
46 | int numClusters = Math.Min(k, data.Count);
|
---|
47 |
|
---|
48 | var assignments = new int[data.Count];
|
---|
49 | for (int i = 0; i < assignments.Length; i++)
|
---|
50 | assignments[i] = -1; // unassigned
|
---|
51 |
|
---|
52 | // (1) initialize each cluster with a random element as mean
|
---|
53 | var clusters = new ClusterInfo[numClusters];
|
---|
54 | var initIndices = new Permutation(PermutationTypes.Absolute, data.Count, random);
|
---|
55 | for (int c = 0; c < numClusters; c++) {
|
---|
56 | assignments[initIndices[c]] = c;
|
---|
57 | clusters[c] = new ClusterInfo {
|
---|
58 | Mean = data[initIndices[c]],
|
---|
59 | Size = 1
|
---|
60 | };
|
---|
61 | }
|
---|
62 |
|
---|
63 | // (2) repeat clustering until change rate is below the threshold
|
---|
64 | double changeRate;
|
---|
65 | do {
|
---|
66 | int changes = Iterate(data, assignments, clusters);
|
---|
67 | changeRate = (double)changes / data.Count;
|
---|
68 | } while (changeRate > changeThreshold);
|
---|
69 |
|
---|
70 | // (3) return non-empty clusters
|
---|
71 | var clustersData = new List<List<int>>(numClusters);
|
---|
72 | for (int c = 0; c < numClusters; c++)
|
---|
73 | clustersData.Add(new List<int>());
|
---|
74 | for (int i = 0; i < assignments.Length; i++)
|
---|
75 | clustersData[assignments[i]].Add(i);
|
---|
76 | clustersData.RemoveAll(c => c.Count == 0);
|
---|
77 | return clustersData;
|
---|
78 | }
|
---|
79 |
|
---|
80 | private int Iterate(List<TData> data, int[] assignments, ClusterInfo[] clusters) {
|
---|
81 | int changes = 0;
|
---|
82 |
|
---|
83 | var newAssignments = new int[data.Count];
|
---|
84 | assignments.CopyTo(newAssignments, 0);
|
---|
85 |
|
---|
86 | // assign elements to currently most suited cluster
|
---|
87 | for (int i = 0; i < data.Count; i++) {
|
---|
88 | int bestCluster = 0;
|
---|
89 | double bestImpact = CalculateImpact(data[i], clusters[0]);
|
---|
90 | for (int c = 1; c < clusters.Length; c++) {
|
---|
91 | double impact = CalculateImpact(data[i], clusters[c]);
|
---|
92 | if (impact < bestImpact) {
|
---|
93 | bestImpact = impact;
|
---|
94 | bestCluster = c;
|
---|
95 | }
|
---|
96 | }
|
---|
97 | newAssignments[i] = bestCluster;
|
---|
98 | if (newAssignments[i] != assignments[i])
|
---|
99 | changes++;
|
---|
100 | }
|
---|
101 |
|
---|
102 | // update clusters
|
---|
103 | var clustersData = new List<List<TData>>(clusters.Length);
|
---|
104 | for (int c = 0; c < clusters.Length; c++)
|
---|
105 | clustersData.Add(new List<TData>());
|
---|
106 | for (int i = 0; i < data.Count; i++) {
|
---|
107 | assignments[i] = newAssignments[i];
|
---|
108 | clustersData[assignments[i]].Add(data[i]);
|
---|
109 | }
|
---|
110 | for (int c = 0; c < clusters.Length; c++) {
|
---|
111 | var clusterData = clustersData[c];
|
---|
112 | if (clusterData.Count == 0)
|
---|
113 | continue;
|
---|
114 |
|
---|
115 | clusters[c].Mean = meanCalculator(clusterData);
|
---|
116 |
|
---|
117 | clusters[c].Variance = 0;
|
---|
118 | foreach (var e in clusterData)
|
---|
119 | clusters[c].Variance += Math.Pow(distanceCalculator(e, clusters[c].Mean), 2);
|
---|
120 | clusters[c].Variance /= clusterData.Count;
|
---|
121 |
|
---|
122 | clusters[c].Size = clusterData.Count;
|
---|
123 | }
|
---|
124 |
|
---|
125 | return changes;
|
---|
126 | }
|
---|
127 |
|
---|
128 | private double CalculateImpact(TData datum, ClusterInfo cluster) {
|
---|
129 | double newVariance = (cluster.Variance * cluster.Size + Math.Pow(distanceCalculator(datum, cluster.Mean), 2)) / (cluster.Size + 1);
|
---|
130 | return newVariance - cluster.Variance;
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|