[16529] | 1 | #region License Information
|
---|
[6583] | 2 | /* HeuristicLab
|
---|
[16453] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6583] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[16559] | 27 | using HEAL.Attic;
|
---|
[6583] | 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | /// <summary>
|
---|
| 32 | /// Represents a nearest neighbour model for regression and classification
|
---|
| 33 | /// </summary>
|
---|
[16462] | 34 | [StorableType("A76C0823-3077-4ACE-8A40-E9B717C7DB60")]
|
---|
[8465] | 35 | [Item("NearestNeighbourModel", "Represents a nearest neighbour model for regression and classification.")]
|
---|
[13941] | 36 | public sealed class NearestNeighbourModel : ClassificationModel, INearestNeighbourModel {
|
---|
[6583] | 37 |
|
---|
[14322] | 38 | private readonly object kdTreeLockObject = new object();
|
---|
[16529] | 39 |
|
---|
[6583] | 40 | private alglib.nearestneighbor.kdtree kdTree;
|
---|
| 41 | public alglib.nearestneighbor.kdtree KDTree {
|
---|
| 42 | get { return kdTree; }
|
---|
| 43 | set {
|
---|
| 44 | if (value != kdTree) {
|
---|
| 45 | if (value == null) throw new ArgumentNullException();
|
---|
| 46 | kdTree = value;
|
---|
| 47 | OnChanged(EventArgs.Empty);
|
---|
| 48 | }
|
---|
| 49 | }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
[13941] | 52 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
[13921] | 53 | get { return allowedInputVariables; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
[6583] | 56 | [Storable]
|
---|
| 57 | private string[] allowedInputVariables;
|
---|
| 58 | [Storable]
|
---|
| 59 | private double[] classValues;
|
---|
| 60 | [Storable]
|
---|
| 61 | private int k;
|
---|
[16529] | 62 | [Storable(DefaultValue = false)]
|
---|
| 63 | private bool selfMatch;
|
---|
[14235] | 64 | [Storable(DefaultValue = null)]
|
---|
| 65 | private double[] weights; // not set for old versions loaded from disk
|
---|
| 66 | [Storable(DefaultValue = null)]
|
---|
| 67 | private double[] offsets; // not set for old versions loaded from disk
|
---|
[8465] | 68 |
|
---|
[6583] | 69 | [StorableConstructor]
|
---|
[16462] | 70 | private NearestNeighbourModel(StorableConstructorFlag _) : base(_) {
|
---|
| 71 | kdTree = new alglib.nearestneighbor.kdtree();
|
---|
[6583] | 72 | }
|
---|
| 73 | private NearestNeighbourModel(NearestNeighbourModel original, Cloner cloner)
|
---|
| 74 | : base(original, cloner) {
|
---|
| 75 | kdTree = new alglib.nearestneighbor.kdtree();
|
---|
| 76 | kdTree.approxf = original.kdTree.approxf;
|
---|
| 77 | kdTree.boxmax = (double[])original.kdTree.boxmax.Clone();
|
---|
| 78 | kdTree.boxmin = (double[])original.kdTree.boxmin.Clone();
|
---|
| 79 | kdTree.buf = (double[])original.kdTree.buf.Clone();
|
---|
| 80 | kdTree.curboxmax = (double[])original.kdTree.curboxmax.Clone();
|
---|
| 81 | kdTree.curboxmin = (double[])original.kdTree.curboxmin.Clone();
|
---|
| 82 | kdTree.curdist = original.kdTree.curdist;
|
---|
| 83 | kdTree.debugcounter = original.kdTree.debugcounter;
|
---|
| 84 | kdTree.idx = (int[])original.kdTree.idx.Clone();
|
---|
| 85 | kdTree.kcur = original.kdTree.kcur;
|
---|
| 86 | kdTree.kneeded = original.kdTree.kneeded;
|
---|
| 87 | kdTree.n = original.kdTree.n;
|
---|
| 88 | kdTree.nodes = (int[])original.kdTree.nodes.Clone();
|
---|
| 89 | kdTree.normtype = original.kdTree.normtype;
|
---|
| 90 | kdTree.nx = original.kdTree.nx;
|
---|
| 91 | kdTree.ny = original.kdTree.ny;
|
---|
| 92 | kdTree.r = (double[])original.kdTree.r.Clone();
|
---|
| 93 | kdTree.rneeded = original.kdTree.rneeded;
|
---|
| 94 | kdTree.selfmatch = original.kdTree.selfmatch;
|
---|
| 95 | kdTree.splits = (double[])original.kdTree.splits.Clone();
|
---|
| 96 | kdTree.tags = (int[])original.kdTree.tags.Clone();
|
---|
| 97 | kdTree.x = (double[])original.kdTree.x.Clone();
|
---|
| 98 | kdTree.xy = (double[,])original.kdTree.xy.Clone();
|
---|
[16529] | 99 | selfMatch = original.selfMatch;
|
---|
[6583] | 100 | k = original.k;
|
---|
[14235] | 101 | isCompatibilityLoaded = original.IsCompatibilityLoaded;
|
---|
| 102 | if (!IsCompatibilityLoaded) {
|
---|
| 103 | weights = new double[original.weights.Length];
|
---|
| 104 | Array.Copy(original.weights, weights, weights.Length);
|
---|
| 105 | offsets = new double[original.offsets.Length];
|
---|
| 106 | Array.Copy(original.offsets, this.offsets, this.offsets.Length);
|
---|
| 107 | }
|
---|
[6583] | 108 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
| 109 | if (original.classValues != null)
|
---|
| 110 | this.classValues = (double[])original.classValues.Clone();
|
---|
| 111 | }
|
---|
[16529] | 112 | public NearestNeighbourModel(IDataset dataset, IEnumerable<int> rows, int k, bool selfMatch, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<double> weights = null, double[] classValues = null)
|
---|
[13941] | 113 | : base(targetVariable) {
|
---|
[8467] | 114 | Name = ItemName;
|
---|
| 115 | Description = ItemDescription;
|
---|
[16529] | 116 | this.selfMatch = selfMatch;
|
---|
[6583] | 117 | this.k = k;
|
---|
| 118 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
[14235] | 119 | double[,] inputMatrix;
|
---|
| 120 | if (IsCompatibilityLoaded) {
|
---|
| 121 | // no scaling
|
---|
[14843] | 122 | inputMatrix = dataset.ToArray(
|
---|
[14235] | 123 | this.allowedInputVariables.Concat(new string[] { targetVariable }),
|
---|
| 124 | rows);
|
---|
| 125 | } else {
|
---|
| 126 | this.offsets = this.allowedInputVariables
|
---|
| 127 | .Select(name => dataset.GetDoubleValues(name, rows).Average() * -1)
|
---|
| 128 | .Concat(new double[] { 0 }) // no offset for target variable
|
---|
| 129 | .ToArray();
|
---|
| 130 | if (weights == null) {
|
---|
| 131 | // automatic determination of weights (all features should have variance = 1)
|
---|
| 132 | this.weights = this.allowedInputVariables
|
---|
[16086] | 133 | .Select(name => {
|
---|
| 134 | var pop = dataset.GetDoubleValues(name, rows).StandardDeviationPop();
|
---|
[16529] | 135 | return pop.IsAlmost(0) ? 1.0 : 1.0 / pop;
|
---|
[16086] | 136 | })
|
---|
[14235] | 137 | .Concat(new double[] { 1.0 }) // no scaling for target variable
|
---|
| 138 | .ToArray();
|
---|
| 139 | } else {
|
---|
| 140 | // user specified weights (+ 1 for target)
|
---|
| 141 | this.weights = weights.Concat(new double[] { 1.0 }).ToArray();
|
---|
| 142 | if (this.weights.Length - 1 != this.allowedInputVariables.Length)
|
---|
| 143 | throw new ArgumentException("The number of elements in the weight vector must match the number of input variables");
|
---|
| 144 | }
|
---|
| 145 | inputMatrix = CreateScaledData(dataset, this.allowedInputVariables.Concat(new string[] { targetVariable }), rows, this.offsets, this.weights);
|
---|
| 146 | }
|
---|
[8465] | 147 |
|
---|
[15786] | 148 | if (inputMatrix.ContainsNanOrInfinity())
|
---|
[8465] | 149 | throw new NotSupportedException(
|
---|
[14826] | 150 | "Nearest neighbour model does not support NaN or infinity values in the input dataset.");
|
---|
[8465] | 151 |
|
---|
| 152 | this.kdTree = new alglib.nearestneighbor.kdtree();
|
---|
| 153 |
|
---|
| 154 | var nRows = inputMatrix.GetLength(0);
|
---|
| 155 | var nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
| 156 |
|
---|
| 157 | if (classValues != null) {
|
---|
[6583] | 158 | this.classValues = (double[])classValues.Clone();
|
---|
[8465] | 159 | int nClasses = classValues.Length;
|
---|
| 160 | // map original class values to values [0..nClasses-1]
|
---|
| 161 | var classIndices = new Dictionary<double, double>();
|
---|
| 162 | for (int i = 0; i < nClasses; i++)
|
---|
| 163 | classIndices[classValues[i]] = i;
|
---|
| 164 |
|
---|
| 165 | for (int row = 0; row < nRows; row++) {
|
---|
| 166 | inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]];
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 | alglib.nearestneighbor.kdtreebuild(inputMatrix, nRows, inputMatrix.GetLength(1) - 1, 1, 2, kdTree);
|
---|
[6583] | 170 | }
|
---|
| 171 |
|
---|
[14235] | 172 | private static double[,] CreateScaledData(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, double[] offsets, double[] factors) {
|
---|
[14843] | 173 | var transforms =
|
---|
| 174 | variables.Select(
|
---|
| 175 | (_, colIdx) =>
|
---|
| 176 | new LinearTransformation(variables) { Addend = offsets[colIdx] * factors[colIdx], Multiplier = factors[colIdx] });
|
---|
| 177 | return dataset.ToArray(variables, transforms, rows);
|
---|
[14235] | 178 | }
|
---|
| 179 |
|
---|
[6583] | 180 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 181 | return new NearestNeighbourModel(this, cloner);
|
---|
| 182 | }
|
---|
| 183 |
|
---|
[12509] | 184 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[14235] | 185 | double[,] inputData;
|
---|
| 186 | if (IsCompatibilityLoaded) {
|
---|
[14843] | 187 | inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
[14235] | 188 | } else {
|
---|
| 189 | inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
|
---|
| 190 | }
|
---|
[6583] | 191 |
|
---|
| 192 | int n = inputData.GetLength(0);
|
---|
| 193 | int columns = inputData.GetLength(1);
|
---|
| 194 | double[] x = new double[columns];
|
---|
| 195 | double[] dists = new double[k];
|
---|
| 196 | double[,] neighbours = new double[k, columns + 1];
|
---|
| 197 |
|
---|
| 198 | for (int row = 0; row < n; row++) {
|
---|
| 199 | for (int column = 0; column < columns; column++) {
|
---|
| 200 | x[column] = inputData[row, column];
|
---|
| 201 | }
|
---|
[14236] | 202 | int numNeighbours;
|
---|
[14314] | 203 | lock (kdTreeLockObject) { // gkronber: the following calls change the kdTree data structure
|
---|
[16529] | 204 | numNeighbours = alglib.nearestneighbor.kdtreequeryknn(kdTree, x, k, selfMatch);
|
---|
[14236] | 205 | alglib.nearestneighbor.kdtreequeryresultsdistances(kdTree, ref dists);
|
---|
| 206 | alglib.nearestneighbor.kdtreequeryresultsxy(kdTree, ref neighbours);
|
---|
| 207 | }
|
---|
[16529] | 208 | if (selfMatch) {
|
---|
| 209 | // weights for neighbours are 1/d.
|
---|
| 210 | // override distances (=0) of exact matches using 1% of the distance of the next closest non-self-match neighbour -> selfmatches weight 100x more than the next closest neighbor.
|
---|
| 211 | // if all k neighbours are selfmatches then they all have weight 0.01.
|
---|
| 212 | double minDist = dists[0] + 1;
|
---|
| 213 | for (int i = 0; i < numNeighbours; i++) {
|
---|
| 214 | if ((minDist > dists[i]) && (dists[i] != 0)) {
|
---|
| 215 | minDist = dists[i];
|
---|
| 216 | }
|
---|
| 217 | }
|
---|
| 218 | minDist /= 100.0;
|
---|
| 219 | for (int i = 0; i < numNeighbours; i++) {
|
---|
| 220 | if (dists[i] == 0) {
|
---|
| 221 | dists[i] = minDist;
|
---|
| 222 | }
|
---|
| 223 | }
|
---|
| 224 | }
|
---|
[6583] | 225 | double distanceWeightedValue = 0.0;
|
---|
| 226 | double distsSum = 0.0;
|
---|
[14236] | 227 | for (int i = 0; i < numNeighbours; i++) {
|
---|
[6583] | 228 | distanceWeightedValue += neighbours[i, columns] / dists[i];
|
---|
| 229 | distsSum += 1.0 / dists[i];
|
---|
| 230 | }
|
---|
| 231 | yield return distanceWeightedValue / distsSum;
|
---|
| 232 | }
|
---|
| 233 | }
|
---|
| 234 |
|
---|
[13941] | 235 | public override IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[8465] | 236 | if (classValues == null) throw new InvalidOperationException("No class values are defined.");
|
---|
[14235] | 237 | double[,] inputData;
|
---|
| 238 | if (IsCompatibilityLoaded) {
|
---|
[14843] | 239 | inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
[14235] | 240 | } else {
|
---|
| 241 | inputData = CreateScaledData(dataset, allowedInputVariables, rows, offsets, weights);
|
---|
| 242 | }
|
---|
[6583] | 243 | int n = inputData.GetLength(0);
|
---|
| 244 | int columns = inputData.GetLength(1);
|
---|
| 245 | double[] x = new double[columns];
|
---|
| 246 | int[] y = new int[classValues.Length];
|
---|
| 247 | double[] dists = new double[k];
|
---|
| 248 | double[,] neighbours = new double[k, columns + 1];
|
---|
| 249 |
|
---|
| 250 | for (int row = 0; row < n; row++) {
|
---|
| 251 | for (int column = 0; column < columns; column++) {
|
---|
| 252 | x[column] = inputData[row, column];
|
---|
| 253 | }
|
---|
[14236] | 254 | int numNeighbours;
|
---|
[14314] | 255 | lock (kdTreeLockObject) {
|
---|
[14236] | 256 | // gkronber: the following calls change the kdTree data structure
|
---|
[16529] | 257 | numNeighbours = alglib.nearestneighbor.kdtreequeryknn(kdTree, x, k, selfMatch);
|
---|
[14236] | 258 | alglib.nearestneighbor.kdtreequeryresultsdistances(kdTree, ref dists);
|
---|
| 259 | alglib.nearestneighbor.kdtreequeryresultsxy(kdTree, ref neighbours);
|
---|
| 260 | }
|
---|
[6583] | 261 | Array.Clear(y, 0, y.Length);
|
---|
[14236] | 262 | for (int i = 0; i < numNeighbours; i++) {
|
---|
[6583] | 263 | int classValue = (int)Math.Round(neighbours[i, columns]);
|
---|
| 264 | y[classValue]++;
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | // find class for with the largest probability value
|
---|
| 268 | int maxProbClassIndex = 0;
|
---|
| 269 | double maxProb = y[0];
|
---|
| 270 | for (int i = 1; i < y.Length; i++) {
|
---|
| 271 | if (maxProb < y[i]) {
|
---|
| 272 | maxProb = y[i];
|
---|
| 273 | maxProbClassIndex = i;
|
---|
| 274 | }
|
---|
| 275 | }
|
---|
| 276 | yield return classValues[maxProbClassIndex];
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 |
|
---|
[13941] | 280 |
|
---|
[16243] | 281 | public bool IsProblemDataCompatible(IRegressionProblemData problemData, out string errorMessage) {
|
---|
| 282 | return RegressionModel.IsProblemDataCompatible(this, problemData, out errorMessage);
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | public override bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
|
---|
| 286 | if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
|
---|
| 287 |
|
---|
| 288 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
| 289 | if (regressionProblemData != null)
|
---|
| 290 | return IsProblemDataCompatible(regressionProblemData, out errorMessage);
|
---|
| 291 |
|
---|
| 292 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
| 293 | if (classificationProblemData != null)
|
---|
| 294 | return IsProblemDataCompatible(classificationProblemData, out errorMessage);
|
---|
| 295 |
|
---|
| 296 | throw new ArgumentException("The problem data is not a regression nor a classification problem data. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
|
---|
| 297 | }
|
---|
| 298 |
|
---|
[6603] | 299 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[13941] | 300 | return new NearestNeighbourRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
[6603] | 301 | }
|
---|
[13941] | 302 | public override IClassificationSolution CreateClassificationSolution(IClassificationProblemData problemData) {
|
---|
| 303 | return new NearestNeighbourClassificationSolution(this, new ClassificationProblemData(problemData));
|
---|
[6604] | 304 | }
|
---|
[6603] | 305 |
|
---|
[6583] | 306 | #region events
|
---|
| 307 | public event EventHandler Changed;
|
---|
| 308 | private void OnChanged(EventArgs e) {
|
---|
| 309 | var handlers = Changed;
|
---|
| 310 | if (handlers != null)
|
---|
| 311 | handlers(this, e);
|
---|
| 312 | }
|
---|
| 313 | #endregion
|
---|
| 314 |
|
---|
[14235] | 315 |
|
---|
| 316 | // BackwardsCompatibility3.3
|
---|
| 317 | #region Backwards compatible code, remove with 3.4
|
---|
| 318 |
|
---|
| 319 | private bool isCompatibilityLoaded = false; // new kNN models have the value false, kNN models loaded from disc have the value true
|
---|
| 320 | [Storable(DefaultValue = true)]
|
---|
| 321 | public bool IsCompatibilityLoaded {
|
---|
| 322 | get { return isCompatibilityLoaded; }
|
---|
| 323 | set { isCompatibilityLoaded = value; }
|
---|
| 324 | }
|
---|
| 325 | #endregion
|
---|
[6583] | 326 | #region persistence
|
---|
[6584] | 327 | [Storable]
|
---|
| 328 | public double KDTreeApproxF {
|
---|
| 329 | get { return kdTree.approxf; }
|
---|
| 330 | set { kdTree.approxf = value; }
|
---|
| 331 | }
|
---|
| 332 | [Storable]
|
---|
| 333 | public double[] KDTreeBoxMax {
|
---|
| 334 | get { return kdTree.boxmax; }
|
---|
| 335 | set { kdTree.boxmax = value; }
|
---|
| 336 | }
|
---|
| 337 | [Storable]
|
---|
| 338 | public double[] KDTreeBoxMin {
|
---|
| 339 | get { return kdTree.boxmin; }
|
---|
| 340 | set { kdTree.boxmin = value; }
|
---|
| 341 | }
|
---|
| 342 | [Storable]
|
---|
| 343 | public double[] KDTreeBuf {
|
---|
| 344 | get { return kdTree.buf; }
|
---|
| 345 | set { kdTree.buf = value; }
|
---|
| 346 | }
|
---|
| 347 | [Storable]
|
---|
| 348 | public double[] KDTreeCurBoxMax {
|
---|
| 349 | get { return kdTree.curboxmax; }
|
---|
| 350 | set { kdTree.curboxmax = value; }
|
---|
| 351 | }
|
---|
| 352 | [Storable]
|
---|
| 353 | public double[] KDTreeCurBoxMin {
|
---|
| 354 | get { return kdTree.curboxmin; }
|
---|
| 355 | set { kdTree.curboxmin = value; }
|
---|
| 356 | }
|
---|
| 357 | [Storable]
|
---|
| 358 | public double KDTreeCurDist {
|
---|
| 359 | get { return kdTree.curdist; }
|
---|
| 360 | set { kdTree.curdist = value; }
|
---|
| 361 | }
|
---|
| 362 | [Storable]
|
---|
| 363 | public int KDTreeDebugCounter {
|
---|
| 364 | get { return kdTree.debugcounter; }
|
---|
| 365 | set { kdTree.debugcounter = value; }
|
---|
| 366 | }
|
---|
| 367 | [Storable]
|
---|
| 368 | public int[] KDTreeIdx {
|
---|
| 369 | get { return kdTree.idx; }
|
---|
| 370 | set { kdTree.idx = value; }
|
---|
| 371 | }
|
---|
| 372 | [Storable]
|
---|
| 373 | public int KDTreeKCur {
|
---|
| 374 | get { return kdTree.kcur; }
|
---|
| 375 | set { kdTree.kcur = value; }
|
---|
| 376 | }
|
---|
| 377 | [Storable]
|
---|
| 378 | public int KDTreeKNeeded {
|
---|
| 379 | get { return kdTree.kneeded; }
|
---|
| 380 | set { kdTree.kneeded = value; }
|
---|
| 381 | }
|
---|
| 382 | [Storable]
|
---|
| 383 | public int KDTreeN {
|
---|
| 384 | get { return kdTree.n; }
|
---|
| 385 | set { kdTree.n = value; }
|
---|
| 386 | }
|
---|
| 387 | [Storable]
|
---|
| 388 | public int[] KDTreeNodes {
|
---|
| 389 | get { return kdTree.nodes; }
|
---|
| 390 | set { kdTree.nodes = value; }
|
---|
| 391 | }
|
---|
| 392 | [Storable]
|
---|
| 393 | public int KDTreeNormType {
|
---|
| 394 | get { return kdTree.normtype; }
|
---|
| 395 | set { kdTree.normtype = value; }
|
---|
| 396 | }
|
---|
| 397 | [Storable]
|
---|
| 398 | public int KDTreeNX {
|
---|
| 399 | get { return kdTree.nx; }
|
---|
| 400 | set { kdTree.nx = value; }
|
---|
| 401 | }
|
---|
| 402 | [Storable]
|
---|
| 403 | public int KDTreeNY {
|
---|
| 404 | get { return kdTree.ny; }
|
---|
| 405 | set { kdTree.ny = value; }
|
---|
| 406 | }
|
---|
| 407 | [Storable]
|
---|
| 408 | public double[] KDTreeR {
|
---|
| 409 | get { return kdTree.r; }
|
---|
| 410 | set { kdTree.r = value; }
|
---|
| 411 | }
|
---|
| 412 | [Storable]
|
---|
| 413 | public double KDTreeRNeeded {
|
---|
| 414 | get { return kdTree.rneeded; }
|
---|
| 415 | set { kdTree.rneeded = value; }
|
---|
| 416 | }
|
---|
| 417 | [Storable]
|
---|
| 418 | public bool KDTreeSelfMatch {
|
---|
| 419 | get { return kdTree.selfmatch; }
|
---|
| 420 | set { kdTree.selfmatch = value; }
|
---|
| 421 | }
|
---|
| 422 | [Storable]
|
---|
| 423 | public double[] KDTreeSplits {
|
---|
| 424 | get { return kdTree.splits; }
|
---|
| 425 | set { kdTree.splits = value; }
|
---|
| 426 | }
|
---|
| 427 | [Storable]
|
---|
| 428 | public int[] KDTreeTags {
|
---|
| 429 | get { return kdTree.tags; }
|
---|
| 430 | set { kdTree.tags = value; }
|
---|
| 431 | }
|
---|
| 432 | [Storable]
|
---|
| 433 | public double[] KDTreeX {
|
---|
| 434 | get { return kdTree.x; }
|
---|
| 435 | set { kdTree.x = value; }
|
---|
| 436 | }
|
---|
| 437 | [Storable]
|
---|
| 438 | public double[,] KDTreeXY {
|
---|
| 439 | get { return kdTree.xy; }
|
---|
| 440 | set { kdTree.xy = value; }
|
---|
| 441 | }
|
---|
[6583] | 442 | #endregion
|
---|
| 443 | }
|
---|
| 444 | }
|
---|