Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2434_crossvalidation/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionFour.cs @ 17578

Last change on this file since 17578 was 12292, checked in by pfleck, 10 years ago

#2301 Removed the GenerateSteps from the ValueGenerator and put it into the new SequenceGenerator.
Adapted DataAnalysis-Instances and scripts (samples and unit tests).

File size: 3.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26
27namespace HeuristicLab.Problems.Instances.DataAnalysis {
28  public class KeijzerFunctionFour : ArtificialRegressionDataDescriptor {
29
30    public override string Name { get { return "Keijzer 4 f(x) = x³  * exp(-x) * cos(x) * sin(x) * (sin(x)² * cos(x) - 1)"; } }
31    public override string Description {
32      get {
33        return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
34        + "Authors: Maarten Keijzer" + Environment.NewLine
35        + "Function: f(x) = x³  * exp(-x) * cos(x) * sin(x) * (sin(x)² * cos(x) - 1)" + Environment.NewLine
36        + "range(train): x = [0:0.05:10]" + Environment.NewLine
37        + "range(test): x = [0.05:0.05:10.05]" + Environment.NewLine
38        + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)" + Environment.NewLine
39        + "Note: {exp, log, sin, cos}, 100000 evals";
40      }
41    }
42    protected override string TargetVariable { get { return "F"; } }
43    protected override string[] VariableNames { get { return new string[] { "X", "F" }; } }
44    protected override string[] AllowedInputVariables { get { return new string[] { "X" }; } }
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return 201; } }
47    protected override int TestPartitionStart { get { return 201; } }
48    protected override int TestPartitionEnd { get { return 402; } }
49
50    protected override List<List<double>> GenerateValues() {
51      List<List<double>> data = new List<List<double>>();
52      data.Add(SequenceGenerator.GenerateSteps(0, 10, 0.05m).Select(v => (double)v).ToList());
53      data[0].AddRange(SequenceGenerator.GenerateSteps(0.05m, 10.05m, 0.05m).Select(v => (double)v));
54
55      double x;
56      List<double> results = new List<double>();
57      for (int i = 0; i < data[0].Count; i++) {
58        x = data[0][i];
59        results.Add(Math.Pow(x, 3) * Math.Exp(-x) * Math.Cos(x) * Math.Sin(x) * (Math.Pow(Math.Sin(x), 2) * Math.Cos(x) - 1));
60      }
61      data.Add(results);
62
63      return data;
64    }
65  }
66}
Note: See TracBrowser for help on using the repository browser.