Free cookie consent management tool by TermsFeed Policy Generator

source: branches/1614_GeneralizedQAP/HeuristicLab.Problems.GeneralizedQuadraticAssignment/3.3/SolutionCreators/SlackMinimizationSolutionCreator.cs

Last change on this file was 16728, checked in by abeham, 6 years ago

#1614: updated to new persistence and .NET 4.6.1

File size: 8.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Threading;
26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Data;
29using HeuristicLab.Encodings.IntegerVectorEncoding;
30using HeuristicLab.Parameters;
31using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
32using HeuristicLab.Random;
33using HEAL.Attic;
34
35namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
36  [Item("SlackMinimizationSolutionCreator", "A heuristic that creates a solution to the Generalized Quadratic Assignment Problem by minimizing the amount of slack.")]
37  [StorableType("02676A57-A686-4FDB-B912-B3792C749669")]
38  public class SlackMinimizationSolutionCreator : GQAPStochasticSolutionCreator {
39
40    public IValueLookupParameter<IntValue> MaximumTriesParameter {
41      get { return (IValueLookupParameter<IntValue>)Parameters["MaximumTries"]; }
42    }
43    public IValueLookupParameter<BoolValue> CreateMostFeasibleSolutionParameter {
44      get { return (IValueLookupParameter<BoolValue>)Parameters["CreateMostFeasibleSolution"]; }
45    }
46    public IValueLookupParameter<IntValue> DepthParameter {
47      get { return (IValueLookupParameter<IntValue>)Parameters["Depth"]; }
48    }
49    public IValueLookupParameter<IntValue> RandomWalkLengthParameter {
50      get { return (IValueLookupParameter<IntValue>)Parameters["RandomWalkLength"]; }
51    }
52
53    [StorableConstructor]
54    protected SlackMinimizationSolutionCreator(StorableConstructorFlag _) : base(_) { }
55    protected SlackMinimizationSolutionCreator(SlackMinimizationSolutionCreator original, Cloner cloner) : base(original, cloner) { }
56    public SlackMinimizationSolutionCreator()
57      : base() {
58      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumTries", "The maximum number of tries to create a feasible solution after which an exception is thrown. If it is set to 0 or a negative value there will be an infinite number of attempts to create a feasible solution.", new IntValue(100000)));
59      Parameters.Add(new ValueLookupParameter<BoolValue>("CreateMostFeasibleSolution", "If this is set to true the operator will always succeed, and outputs the solution with the least violation instead of throwing an exception.", new BoolValue(false)));
60      Parameters.Add(new ValueLookupParameter<IntValue>("Depth", "How deep the algorithm should look forward.", new IntValue(3)));
61      Parameters.Add(new ValueLookupParameter<IntValue>("RandomWalkLength", "The length of the random walk in the feasible region that is used to diversify the found assignments.", new IntValue(10)));
62    }
63
64    public override IDeepCloneable Clone(Cloner cloner) {
65      return new SlackMinimizationSolutionCreator(this, cloner);
66    }
67
68    public static IntegerVector CreateSolution(IRandom random, GQAPInstance problemInstance,
69      int depth, int maximumTries, bool createMostFeasibleSolution, int randomWalkLength, CancellationToken cancel) {
70      var capacities = problemInstance.Capacities;
71      var demands = problemInstance.Demands;
72
73      IntegerVector result = null;
74      bool isFeasible = false;
75      int counter = 0;
76      double minViolation = double.MaxValue;
77      var slack = new double[capacities.Length];
78      var assignment = new Dictionary<int, int>(demands.Length);
79
80      while (!isFeasible) {
81        cancel.ThrowIfCancellationRequested();
82        if (maximumTries > 0) {
83          counter++;
84          if (counter > maximumTries) {
85            if (createMostFeasibleSolution) break;
86            else throw new InvalidOperationException("A feasible solution could not be obtained after " + maximumTries + " attempts.");
87          }
88        }
89        assignment.Clear();
90        for (int i = 0; i < capacities.Length; i++) slack[i] = capacities[i];
91        var remainingEquipment = new HashSet<int>(Enumerable.Range(0, demands.Length));
92        while (remainingEquipment.Any()) {
93          var minimumDemand = remainingEquipment.Min(x => demands[x]);
94          var possibleLocations = Enumerable.Range(0, capacities.Length).Where(x => slack[x] >= minimumDemand);
95          if (!possibleLocations.Any()) break;
96          foreach (var location in possibleLocations.Shuffle(random)) {
97            var group = FindBestGroup(location, slack[location], remainingEquipment, demands, depth);
98            foreach (var eq in group) {
99              remainingEquipment.Remove(eq);
100              assignment[eq] = location;
101              slack[location] -= demands[eq];
102            }
103          }
104        }
105        if (assignment.Count != demands.Length) {
106          // complete the solution
107          while (remainingEquipment.Any()) {
108            var f = remainingEquipment.MaxItems(x => demands[x]).SampleRandom(random);
109            var l = Enumerable.Range(0, capacities.Length).MaxItems(x => slack[x]).SampleRandom(random);
110            remainingEquipment.Remove(f);
111            assignment.Add(f, l);
112            slack[l] -= demands[f];
113          }
114        } else RandomFeasibleWalk(random, assignment, demands, slack, randomWalkLength);
115        double violation = slack.Select(x => x < 0 ? -x : 0).Sum();
116        isFeasible = violation == 0;
117        if (isFeasible || violation < minViolation) {
118          result = new IntegerVector(assignment.OrderBy(x => x.Key).Select(x => x.Value).ToArray());
119          minViolation = violation;
120        }
121      }
122      return result;
123    }
124
125    private static IEnumerable<int> FindBestGroup(int location, double slack, HashSet<int> remainingEquipment, DoubleArray demands, int depth = 3) {
126      var feasibleEquipment = remainingEquipment.Where(x => demands[x] <= slack).ToArray();
127
128      if (!feasibleEquipment.Any()) yield break;
129      if (depth == 0) {
130        var e = feasibleEquipment.MaxItems(x => demands[x]).First();
131        yield return e;
132        yield break;
133      }
134
135      double bestSlack = slack;
136      int bestEquipment = -1;
137      int[] bestColleagues = new int[0];
138      foreach (var e in feasibleEquipment) {
139        remainingEquipment.Remove(e);
140        var colleagues = FindBestGroup(location, slack - demands[e], remainingEquipment, demands, depth - 1).ToArray();
141        var slackWithColleagues = slack - demands[e] - colleagues.Sum(x => demands[x]);
142        if (bestSlack > slackWithColleagues || (bestSlack == slackWithColleagues && colleagues.Length < bestColleagues.Length)) {
143          bestSlack = slackWithColleagues;
144          bestEquipment = e;
145          bestColleagues = colleagues;
146        }
147        remainingEquipment.Add(e);
148      }
149      yield return bestEquipment;
150      foreach (var a in bestColleagues) yield return a;
151    }
152
153    private static void RandomFeasibleWalk(IRandom random, Dictionary<int, int> assignment, DoubleArray demands, double[] slack, int walkLength) {
154      for (int i = 0; i < walkLength; i++) {
155        var equipments = Enumerable.Range(0, demands.Length).Shuffle(random);
156        foreach (var e in equipments) {
157          var partners = Enumerable.Range(0, demands.Length)
158            .Where(x => slack[assignment[x]] + demands[x] - demands[e] >= 0
159                && slack[assignment[e]] + demands[e] - demands[x] >= 0);
160          if (!partners.Any()) continue;
161          var f = partners.SampleRandom(random);
162          int h = assignment[e];
163          assignment[e] = assignment[f];
164          assignment[f] = h;
165          slack[assignment[e]] += demands[f] - demands[e];
166          slack[assignment[f]] += demands[e] - demands[f];
167          break;
168        }
169      }
170    }
171
172    protected override IntegerVector CreateRandomSolution(IRandom random, GQAPInstance problemInstance) {
173      return CreateSolution(random, problemInstance,
174        DepthParameter.ActualValue.Value,
175        MaximumTriesParameter.ActualValue.Value,
176        CreateMostFeasibleSolutionParameter.ActualValue.Value,
177        RandomWalkLengthParameter.ActualValue.Value,
178        CancellationToken);
179    }
180  }
181}
Note: See TracBrowser for help on using the repository browser.