1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HEAL.Attic;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Random;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Algorithms.Evolutionary {
|
---|
36 | [StorableType("d568d524-1f84-461c-adf5-573d8e472063")]
|
---|
37 | public enum ESSelection { Plus = 0, Comma = 1 }
|
---|
38 |
|
---|
39 | [Item("Evolution Strategy (GQAP)", "The algorithm implements a simple evolution strategy (ES).")]
|
---|
40 | [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms)]
|
---|
41 | [StorableType("A1590185-F2E3-4163-896E-28EEC93A5CDF")]
|
---|
42 | public sealed class EvolutionStrategy : StochasticAlgorithm<ESContext, IntegerVectorEncoding> {
|
---|
43 |
|
---|
44 | public override bool SupportsPause {
|
---|
45 | get { return true; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public override Type ProblemType {
|
---|
49 | get { return typeof(GQAP); }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public new GQAP Problem {
|
---|
53 | get { return (GQAP)base.Problem; }
|
---|
54 | set { base.Problem = value; }
|
---|
55 | }
|
---|
56 |
|
---|
57 | [Storable]
|
---|
58 | private FixedValueParameter<IntValue> lambdaParameter;
|
---|
59 | private IFixedValueParameter<IntValue> LambdaParameter {
|
---|
60 | get { return lambdaParameter; }
|
---|
61 | }
|
---|
62 | [Storable]
|
---|
63 | private FixedValueParameter<IntValue> muParameter;
|
---|
64 | public IFixedValueParameter<IntValue> MuParameter {
|
---|
65 | get { return muParameter; }
|
---|
66 | }
|
---|
67 | [Storable]
|
---|
68 | private FixedValueParameter<EnumValue<ESSelection>> selectionParameter;
|
---|
69 | public IFixedValueParameter<EnumValue<ESSelection>> SelectionParameter {
|
---|
70 | get { return selectionParameter; }
|
---|
71 | }
|
---|
72 | [Storable]
|
---|
73 | private FixedValueParameter<BoolValue> useRecombinationParameter;
|
---|
74 | public IFixedValueParameter<BoolValue> UseRecombinationParameter {
|
---|
75 | get { return useRecombinationParameter; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | public int Lambda {
|
---|
79 | get { return lambdaParameter.Value.Value; }
|
---|
80 | set { lambdaParameter.Value.Value = value; }
|
---|
81 | }
|
---|
82 | public int Mu {
|
---|
83 | get { return muParameter.Value.Value; }
|
---|
84 | set { muParameter.Value.Value = value; }
|
---|
85 | }
|
---|
86 | public ESSelection Selection {
|
---|
87 | get { return selectionParameter.Value.Value; }
|
---|
88 | set { selectionParameter.Value.Value = value; }
|
---|
89 | }
|
---|
90 | public bool UseRecombination {
|
---|
91 | get { return useRecombinationParameter.Value.Value; }
|
---|
92 | set { useRecombinationParameter.Value.Value = value; }
|
---|
93 | }
|
---|
94 |
|
---|
95 | [StorableConstructor]
|
---|
96 | private EvolutionStrategy(StorableConstructorFlag _) : base(_) { }
|
---|
97 | private EvolutionStrategy(EvolutionStrategy original, Cloner cloner)
|
---|
98 | : base(original, cloner) {
|
---|
99 | lambdaParameter = cloner.Clone(original.lambdaParameter);
|
---|
100 | muParameter = cloner.Clone(original.muParameter);
|
---|
101 | selectionParameter = cloner.Clone(original.selectionParameter);
|
---|
102 | useRecombinationParameter = cloner.Clone(original.useRecombinationParameter);
|
---|
103 | }
|
---|
104 | public EvolutionStrategy() {
|
---|
105 | Parameters.Add(lambdaParameter = new FixedValueParameter<IntValue>("Lambda", "(λ) The amount of offspring that are created each generation.", new IntValue(10)));
|
---|
106 | Parameters.Add(muParameter = new FixedValueParameter<IntValue>("Mu", "(μ) The population size.", new IntValue(1)));
|
---|
107 | Parameters.Add(selectionParameter= new FixedValueParameter<EnumValue<ESSelection>>("Selection", "The selection strategy: elitist (plus) or generational (comma).", new EnumValue<ESSelection>(ESSelection.Plus)));
|
---|
108 | Parameters.Add(useRecombinationParameter = new FixedValueParameter<BoolValue>("Use Recombination", "Whether to create an \"intermediate\" solution to perform the mutation from.", new BoolValue(false)));
|
---|
109 |
|
---|
110 | Problem = new GQAP();
|
---|
111 | }
|
---|
112 |
|
---|
113 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
114 | return new EvolutionStrategy(this, cloner);
|
---|
115 | }
|
---|
116 |
|
---|
117 | protected override void Initialize(CancellationToken cancellationToken) {
|
---|
118 | base.Initialize(cancellationToken);
|
---|
119 |
|
---|
120 | Context.NormalRand = new NormalDistributedRandom(Context.Random, 0, 1);
|
---|
121 | Context.Problem = Problem;
|
---|
122 | Context.BestSolution = null;
|
---|
123 |
|
---|
124 | for (var m = 0; m < Mu; m++) {
|
---|
125 | var assign = new IntegerVector(Problem.ProblemInstance.Demands.Length, Context.Random, 0, Problem.ProblemInstance.Capacities.Length);
|
---|
126 | var eval = Problem.ProblemInstance.Evaluate(assign);
|
---|
127 | Context.EvaluatedSolutions++;
|
---|
128 |
|
---|
129 | var min = (1.0 / assign.Length) * 2 - 1; // desired min prob
|
---|
130 | var max = (4.0 / assign.Length) * 2 - 1; // desired max prob
|
---|
131 | min = 0.5 * (Math.Log(1 + min) - Math.Log(1 - min)); // arctanh
|
---|
132 | max = 0.5 * (Math.Log(1 + max) - Math.Log(1 - max));
|
---|
133 | var ind = new ESGQAPSolution(assign, eval, min + Context.Random.NextDouble() * (max - min));
|
---|
134 | var fit = Problem.ProblemInstance.ToSingleObjective(eval);
|
---|
135 | Context.AddToPopulation(Context.ToScope(ind, fit));
|
---|
136 | if (double.IsNaN(Context.BestQuality) || fit < Context.BestQuality) {
|
---|
137 | Context.BestQuality = fit;
|
---|
138 | Context.BestSolution = (ESGQAPSolution)ind.Clone();
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
143 | Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
144 | Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
145 | Results.Add(new Result("BestSolution", Context.BestSolution));
|
---|
146 |
|
---|
147 | Context.RunOperator(Analyzer, cancellationToken);
|
---|
148 | }
|
---|
149 |
|
---|
150 | protected override void Run(CancellationToken cancellationToken) {
|
---|
151 | base.Run(cancellationToken);
|
---|
152 | var lastUpdate = ExecutionTime;
|
---|
153 | var eq = new IntegerVectorEqualityComparer();
|
---|
154 |
|
---|
155 | while (!StoppingCriterion()) {
|
---|
156 | var nextGen = new List<ISingleObjectiveSolutionScope<ESGQAPSolution>>(Lambda);
|
---|
157 |
|
---|
158 | for (var l = 0; l < Lambda; l++) {
|
---|
159 | IntegerVector child = null;
|
---|
160 | var sParam = 0.0;
|
---|
161 | if (UseRecombination) {
|
---|
162 | child = DiscreteLocationCrossover.Apply(Context.Random, new ItemArray<IntegerVector>(Context.Population.Select(x => x.Solution.Assignment)), Problem.ProblemInstance.Demands, Problem.ProblemInstance.Capacities);
|
---|
163 | sParam = Context.Population.Select(x => x.Solution.SParam).Average();
|
---|
164 | } else {
|
---|
165 | var m = Context.AtRandomPopulation();
|
---|
166 | child = (IntegerVector)m.Solution.Assignment.Clone();
|
---|
167 | sParam = m.Solution.SParam;
|
---|
168 | }
|
---|
169 | sParam += 0.7071 * Context.NormalRand.NextDouble();
|
---|
170 | RelocateEquipmentManipluator.Apply(Context.Random, child,
|
---|
171 | Problem.ProblemInstance.Capacities.Length, (Math.Tanh(sParam) + 1) / 2.0);
|
---|
172 | var eval = Problem.ProblemInstance.Evaluate(child);
|
---|
173 | Context.EvaluatedSolutions++;
|
---|
174 |
|
---|
175 | var offspring = new ESGQAPSolution(child, eval, sParam);
|
---|
176 |
|
---|
177 | var fit = Problem.ProblemInstance.ToSingleObjective(offspring.Evaluation);
|
---|
178 | if (Selection == ESSelection.Comma || Context.Population.Select(x => x.Solution.Assignment).All(x => !eq.Equals(child, x)))
|
---|
179 | nextGen.Add(Context.ToScope(offspring, fit));
|
---|
180 |
|
---|
181 | if (fit < Context.BestQuality) {
|
---|
182 | Context.BestQuality = fit;
|
---|
183 | Context.BestSolution = (ESGQAPSolution)offspring.Clone();
|
---|
184 | }
|
---|
185 | }
|
---|
186 |
|
---|
187 | if (Selection == ESSelection.Comma) {
|
---|
188 | Context.ReplacePopulation(nextGen.OrderBy(x => x.Fitness).Take(Mu));
|
---|
189 | } else if (Selection == ESSelection.Plus) {
|
---|
190 | var best = Context.Population.Concat(nextGen).OrderBy(x => x.Fitness).Take(Mu).ToList();
|
---|
191 | Context.ReplacePopulation(best);
|
---|
192 | } else throw new InvalidOperationException("Unknown Selection strategy: " + Selection);
|
---|
193 |
|
---|
194 | IResult result;
|
---|
195 | if (ExecutionTime - lastUpdate > TimeSpan.FromSeconds(1)) {
|
---|
196 | if (Results.TryGetValue("Iterations", out result))
|
---|
197 | ((IntValue)result.Value).Value = Context.Iterations;
|
---|
198 | else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
199 | if (Results.TryGetValue("EvaluatedSolutions", out result))
|
---|
200 | ((IntValue)result.Value).Value = Context.EvaluatedSolutions;
|
---|
201 | else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
202 | lastUpdate = ExecutionTime;
|
---|
203 | }
|
---|
204 | if (Results.TryGetValue("BestQuality", out result))
|
---|
205 | ((DoubleValue)result.Value).Value = Context.BestQuality;
|
---|
206 | else Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
|
---|
207 | if (Results.TryGetValue("BestSolution", out result))
|
---|
208 | result.Value = Context.BestSolution;
|
---|
209 | else Results.Add(new Result("BestSolution", Context.BestSolution));
|
---|
210 |
|
---|
211 | try {
|
---|
212 | Context.RunOperator(Analyzer, cancellationToken);
|
---|
213 | } catch (OperationCanceledException) { }
|
---|
214 |
|
---|
215 | Context.Iterations++;
|
---|
216 | if (cancellationToken.IsCancellationRequested) break;
|
---|
217 | }
|
---|
218 | IResult result2;
|
---|
219 | if (Results.TryGetValue("Iterations", out result2))
|
---|
220 | ((IntValue)result2.Value).Value = Context.Iterations;
|
---|
221 | else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
|
---|
222 | if (Results.TryGetValue("EvaluatedSolutions", out result2))
|
---|
223 | ((IntValue)result2.Value).Value = Context.EvaluatedSolutions;
|
---|
224 | else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
|
---|
225 | }
|
---|
226 | }
|
---|
227 | }
|
---|