[13774] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[16728] | 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HEAL.Attic;
|
---|
[13774] | 26 | using HeuristicLab.Analysis;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.OptimizationExpertSystem.Common {
|
---|
| 33 | [Item("Overall Best Recommender", "")]
|
---|
[16728] | 34 | [StorableType("C9DFC50D-6637-4238-B7F1-5D434A16815E")]
|
---|
[13774] | 35 | public class OverallBestRecommender : ParameterizedNamedItem, IAlgorithmInstanceRecommender {
|
---|
| 36 |
|
---|
| 37 | private IFixedValueParameter<DoubleValue> NeighborhoodFactorParameter {
|
---|
| 38 | get { return (IFixedValueParameter<DoubleValue>)Parameters["NeighborhoodFactor"]; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | [StorableConstructor]
|
---|
[16728] | 42 | private OverallBestRecommender(StorableConstructorFlag _) : base(_) { }
|
---|
[13791] | 43 | private OverallBestRecommender(OverallBestRecommender original, Cloner cloner) : base(original, cloner) { }
|
---|
| 44 | public OverallBestRecommender() { }
|
---|
[13774] | 45 |
|
---|
| 46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 47 | return new OverallBestRecommender(this, cloner);
|
---|
| 48 | }
|
---|
| 49 |
|
---|
[13791] | 50 | public IRecommendationModel TrainModel(IRun[] problemInstances, KnowledgeCenter kc, string[] characteristics) {
|
---|
[13794] | 51 | var instances = new List<KeyValuePair<IAlgorithm, double>>();
|
---|
[13787] | 52 | foreach (var relevantRuns in kc.GetKnowledgeBaseByAlgorithm()) {
|
---|
[13774] | 53 | var algorithm = relevantRuns.Key;
|
---|
| 54 | var pis = relevantRuns.Value.Select(x => ((StringValue)x.Parameters["Problem Name"]).Value).Distinct()
|
---|
[13791] | 55 | .Select(x => Tuple.Create(x, problemInstances.SingleOrDefault(y => ((StringValue)y.Parameters["Problem Name"]).Value == x)))
|
---|
[13774] | 56 | .Where(x => x.Item2 != null)
|
---|
| 57 | .Select(x => Tuple.Create(x.Item1, ((DoubleValue)x.Item2.Parameters["BestKnownQuality"]).Value))
|
---|
| 58 | .ToDictionary(x => x.Item1, x => x.Item2);
|
---|
| 59 | var avgERT = 0.0;
|
---|
| 60 | var count = 0;
|
---|
| 61 | foreach (var problemRuns in relevantRuns.Value.GroupBy(x => ((StringValue)x.Parameters["Problem Name"]).Value)) {
|
---|
[13794] | 62 | double bkq;
|
---|
| 63 | if (!pis.TryGetValue(problemRuns.Key, out bkq)) continue;
|
---|
[13797] | 64 | var ert = ExpectedRuntimeHelper.CalculateErt(problemRuns.ToList(), "QualityPerEvaluations", kc.GetTarget(bkq, kc.MinimumTarget.Value, kc.Maximization), kc.Maximization).ExpectedRuntime;
|
---|
[13803] | 65 | if (double.IsInfinity(ert)) ert = int.MaxValue;
|
---|
[13774] | 66 | avgERT += ert;
|
---|
| 67 | count++;
|
---|
| 68 | }
|
---|
| 69 | avgERT /= count;
|
---|
[13794] | 70 | instances.Add(new KeyValuePair<IAlgorithm, double>(algorithm, avgERT));
|
---|
[13774] | 71 | }
|
---|
| 72 |
|
---|
[13794] | 73 | return new FixedRankModel(instances.OrderBy(x => x.Value));
|
---|
[13774] | 74 | }
|
---|
| 75 | }
|
---|
| 76 | }
|
---|