1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Analysis.Statistics {
|
---|
26 | public class ExpFitting : IFitting {
|
---|
27 | private void ExpFunc(double[] c, double[] x, ref double func, object obj) {
|
---|
28 | func = Math.Exp(-c[0] * Math.Pow(x[0], 2));
|
---|
29 | }
|
---|
30 |
|
---|
31 | private double[] GetDefaultXValues(int n) {
|
---|
32 | var stdX = Enumerable.Range(1, n).Select(x => (double)x).ToArray();
|
---|
33 | return stdX;
|
---|
34 | }
|
---|
35 |
|
---|
36 | public void Calculate(double[] dataPoints, out double p0) {
|
---|
37 | var stdX = GetDefaultXValues(dataPoints.Count());
|
---|
38 | Calculate(dataPoints, stdX, out p0);
|
---|
39 | }
|
---|
40 |
|
---|
41 | public void Calculate(double[] y, double[] x, out double p0) {
|
---|
42 | if (y.Count() != x.Count()) {
|
---|
43 | throw new ArgumentException("The lenght of x and y needs do be equal. ");
|
---|
44 | }
|
---|
45 |
|
---|
46 | double[] c = new double[] { 0.3 };
|
---|
47 | double epsf = 0;
|
---|
48 | double epsx = 0.000001;
|
---|
49 | int maxits = 0;
|
---|
50 | int info;
|
---|
51 | alglib.lsfitstate state;
|
---|
52 | alglib.lsfitreport rep;
|
---|
53 | double diffstep = 0.0001;
|
---|
54 | double[,] xx = new double[x.Count(), 1];
|
---|
55 |
|
---|
56 | for (int i = 0; i < x.Count(); i++) {
|
---|
57 | xx[i, 0] = x[i];
|
---|
58 | }
|
---|
59 |
|
---|
60 | alglib.lsfitcreatef(xx, y, c, diffstep, out state);
|
---|
61 | alglib.lsfitsetcond(state, epsf, epsx, maxits);
|
---|
62 | alglib.lsfitfit(state, ExpFunc, null, null);
|
---|
63 | alglib.lsfitresults(state, out info, out c, out rep);
|
---|
64 |
|
---|
65 | p0 = c[0];
|
---|
66 | }
|
---|
67 |
|
---|
68 | public DataRow CalculateFittedLine(double[] dataPoints) {
|
---|
69 | DataRow newRow = new DataRow();
|
---|
70 | double c0;
|
---|
71 | Calculate(dataPoints, out c0);
|
---|
72 | var stdX = GetDefaultXValues(dataPoints.Count());
|
---|
73 |
|
---|
74 | for (int i = 0; i < stdX.Count(); i++) {
|
---|
75 | newRow.Values.Add(Math.Exp(-c0 * Math.Pow(stdX[i], 2)));
|
---|
76 | }
|
---|
77 |
|
---|
78 | return newRow;
|
---|
79 | }
|
---|
80 |
|
---|
81 | public DataRow CalculateFittedLine(double[] y, double[] x) {
|
---|
82 | DataRow newRow = new DataRow();
|
---|
83 | double c0;
|
---|
84 | Calculate(y, x, out c0);
|
---|
85 |
|
---|
86 | for (int i = 0; i < x.Count(); i++) {
|
---|
87 | newRow.Values.Add(Math.Exp(-c0 * Math.Pow(x[i], 2)));
|
---|
88 | }
|
---|
89 |
|
---|
90 | return newRow;
|
---|
91 | }
|
---|
92 |
|
---|
93 | public override string ToString() {
|
---|
94 | return "Exponential Fitting";
|
---|
95 | }
|
---|
96 | }
|
---|
97 | }
|
---|