1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Analysis.Statistics {
|
---|
27 | public static class BonferroniHolm {
|
---|
28 | /// <summary>
|
---|
29 | /// Based on David Groppe's MATLAB implementation
|
---|
30 | /// (BSD licensed, see
|
---|
31 | /// http://www.mathworks.com/matlabcentral/fileexchange/28303-bonferroni-holm-correction-for-multiple-comparisons)
|
---|
32 | /// </summary>
|
---|
33 | public static double[] Calculate(double globalAlpha, double[] pValues, out bool[] h) {
|
---|
34 | int k = pValues.Length;
|
---|
35 | double[] alphaNiveau = new double[k];
|
---|
36 | double[] adjustedPValues = new double[k];
|
---|
37 | bool[] decision = new bool[k];
|
---|
38 | Dictionary<int, double> pValuesIndizes = new Dictionary<int, double>();
|
---|
39 |
|
---|
40 | for (int i = 0; i < k; i++) {
|
---|
41 | pValuesIndizes.Add(i, pValues[i]);
|
---|
42 | }
|
---|
43 | var sortedPValues = pValuesIndizes.OrderBy(x => x.Value).ToArray();
|
---|
44 |
|
---|
45 | for (int i = 1; i < k + 1; i++) {
|
---|
46 | alphaNiveau[i - 1] = globalAlpha / (k - i + 1);
|
---|
47 | int idx = sortedPValues[i - 1].Key;
|
---|
48 |
|
---|
49 | if (i == 1) {
|
---|
50 | //true means reject
|
---|
51 | decision[idx] = sortedPValues[i - 1].Value < alphaNiveau[i - 1];
|
---|
52 | adjustedPValues[idx] = sortedPValues[i - 1].Value * (k - i + 1);
|
---|
53 | } else {
|
---|
54 | decision[idx] = decision[sortedPValues[i - 2].Key] && (sortedPValues[i - 1].Value < alphaNiveau[i - 1]);
|
---|
55 | adjustedPValues[idx] = Math.Max(adjustedPValues[sortedPValues[i - 2].Key], sortedPValues[i - 1].Value * (k - i + 1));
|
---|
56 | }
|
---|
57 | if (adjustedPValues[idx] > 1.0) {
|
---|
58 | adjustedPValues[idx] = 1.0;
|
---|
59 | }
|
---|
60 | }
|
---|
61 |
|
---|
62 | h = decision;
|
---|
63 | return adjustedPValues;
|
---|
64 | }
|
---|
65 | }
|
---|
66 | }
|
---|